Graph-based information diffusion method for prioritizing functionally related genes in protein-protein interaction networks

被引:0
作者
Minh Pham [1 ,2 ]
Lichtarge, Olivier [2 ,3 ,4 ,5 ,6 ]
机构
[1] Baylor Coll Med, Integrat Mol & Biomed Sci Grad Program, One Baylor Plaza, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Mol & Human Genet, One Baylor Plaza, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Struct & Computat Biol, One Baylor Plaza, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Mol Biophys, One Baylor Plaza, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Biochem & Mol Biol, One Baylor Plaza, Houston, TX 77030 USA
[6] Baylor Coll Med, Dept Pharmacol, One Baylor Plaza, Houston, TX 77030 USA
来源
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020 | 2020年
基金
美国国家卫生研究院;
关键词
Network diffusion; Network validation; Gene function annotation;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Shortest path length methods are routinely used to validate whether genes of interest are functionally related to each other based on biological network information. However, the methods are computationally intensive, impeding extensive utilization of network information. In addition, non-weighted shortest path length approach, which is more frequently used, often treat all network connections equally without taking into account of confidence levels of the associations. On the other hand, graph-based information diffusion method, which employs both the presence and confidence weights of network edges, can efficiently explore large networks and has previously detected meaningful biological patterns. Therefore, in this study, we hypothesized that the graph-based information diffusion method could prioritize genes with relevant functions more efficiently and accurately than the shortest path length approaches. We demonstrated that the graph-based information diffusion method substantially differentiated not only genes participating in same biological pathways (p << 0.0001) but also genes associated with specific human drug-induced clinical symptoms (p << 0.0001) from random. Furthermore, the diffusion method prioritized these functionally related genes faster and more accurately than the shortest path length approaches (pathways: p = 2.7e-28, clinical symptoms: p = 0.032). These data show the graph-based information diffusion method can be routinely used for robust prioritization of functionally related genes, facilitating efficient network validation and hypothesis generation, especially for human phenotype-specific genes.
引用
收藏
页码:439 / 450
页数:12
相关论文
共 20 条
  • [1] High-Throughput Functional Analysis Distinguishes Pathogenic, Nonpathogenic, and Compensatory Transcriptional Changes in Neurodegeneration
    Al-Ramahi, Ismael
    Lu, Boxun
    Di Paola, Simone
    Pang, Kaifang
    de Haro, Maria
    Peluso, Ivana
    Gallego-Flores, Tatiana
    Malik, Nazish T.
    Erikson, Kelly
    Bleiberg, Benjamin A.
    Avalos, Matthew
    Fan, George
    Rivers, Laura Elizabeth
    Laitman, Andrew M.
    Diaz-Garcia, Javier R.
    Hild, Marc
    Palacino, James
    Liu, Zhandong
    Medina, Diego L.
    Botas, Juan
    [J]. CELL SYSTEMS, 2018, 7 (01) : 28 - +
  • [2] Expansion of the Gene Ontology knowledgebase and resources
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Thomas, P. D.
    Mi, H.
    Muruganujan, A.
    Huang, X.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Marygold, S. J.
    McQuilton, P.
    Ponting, L.
    Millburn, G. H.
    Rey, A. J.
    Stefancsik, R.
    Tweedie, S.
    Falls, K.
    Schroeder, A. J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Foulger, R. E.
    Huntley, R. P.
    Denny, P.
    Campbell, N. H.
    Kramarz, B.
    Patel, S.
    Buxton, J. L.
    Umrao, Z.
    Deng, A. T.
    Alrohaif, H.
    Mitchell, K.
    Ratnaraj, F.
    Omer, W.
    Rodriguez-Lopez, M.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D331 - D338
  • [3] Dijkstra E. W., 1959, NUMER MATH, V1, P1, DOI DOI 10.1007/BF01386390
  • [4] Eppig JT, 2017, METHODS MOL BIOL, V1488, P47, DOI 10.1007/978-1-4939-6427-7_3
  • [5] The Reactome Pathway Knowledgebase
    Fabregat, Antonio
    Jupe, Steven
    Matthews, Lisa
    Sidiropoulos, Konstantinos
    Gillespie, Marc
    Garapati, Phani
    Haw, Robin
    Jassal, Bijay
    Korninger, Florian
    May, Bruce
    Milacic, Marija
    Roca, Corina Duenas
    Rothfels, Karen
    Sevilla, Cristoffer
    Shamovsky, Veronica
    Shorser, Solomon
    Varusai, Thawfeek
    Viteri, Guilherme
    Weiser, Joel
    Wu, Guanming
    Stein, Lincoln
    Hermjakob, Henning
    D'Eustachio, Peter
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D649 - D655
  • [6] Fredman M. L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P338, DOI 10.1109/SFCS.1984.715934
  • [7] Hagberg Aric A., 2008, P 7 PYTH SCI C SCIPY, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003
  • [8] The GOA database: Gene Ontology annotation updates for 2015
    Huntley, Rachael P.
    Sawford, Tony
    Mutowo-Meullenet, Prudence
    Shypitsyna, Aleksandra
    Bonilla, Carlos
    Martin, Maria J.
    O'Donovan, Claire
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D1057 - D1063
  • [9] Ji X, 2019, METHODS MOL BIOL, V1903, P203, DOI 10.1007/978-1-4939-8955-3_12
  • [10] KEGG: Kyoto Encyclopedia of Genes and Genomes
    Kanehisa, M
    Goto, S
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 27 - 30