Numerical bifurcation and stability for the capillary-gravity Whitham equation

被引:1
作者
Charalampidis, Efstathios G. [1 ]
Hur, Vera Mikyoung [2 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Capillary-gravity Whitham equation; Periodic travelling waves; Global bifurcation; Orbital stability; MODULATIONAL INSTABILITY; SURFACE-TENSION; WAVE;
D O I
10.1016/j.wavemoti.2021.102793
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We adopt a robust numerical continuation scheme to examine the global bifurcation of periodic travelling waves of the capillary-gravity Whitham equation, which combines the dispersion in the linear theory of capillary-gravity waves and a shallow water nonlinearity. We employ a highly accurate numerical method for space discretization and time stepping, to address orbital stability and instability for a rich variety of the solutions. Our findings can help classify capillary-gravity waves and understand their long-term dynamics. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:18
相关论文
共 35 条
[1]  
[Anonymous], 1977, CBMS NSF REGIONAL C
[2]  
[Anonymous], 2003, Fundamentals of Algorithms
[3]   LOCAL AND GLOBAL ASPECTS OF THE (1, N) MODE INTERACTION FOR CAPILLARY GRAVITY-WAVES [J].
ASTON, PJ .
PHYSICA D, 1991, 52 (2-3) :415-428
[4]   Deflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equation [J].
Boulle, N. ;
Charalampidis, E. G. ;
Farrell, P. E. ;
Kevrekidis, P. G. .
PHYSICAL REVIEW A, 2020, 102 (05)
[5]  
Boyd John P, 2001, Chebyshev and Fourier spectral methods
[6]   Stability of Periodic, Traveling-Wave Solutions to the Capillary Whitham Equation [J].
Carter, John D. ;
Rozman, Morgan .
FLUIDS, 2019, 4 (01)
[7]  
Carter Jonh D., NUMERICAL STUD UNPUB, V2021
[8]   Bifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuation [J].
Charalampidis, E. G. ;
Boulle, N. ;
Farrell, P. E. ;
Kevrekidis, P. G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 87
[9]   The Whitham equation for hydroelastic waves [J].
Dinvay, Evgueni ;
Kalisch, Henrik ;
Moldabayev, Daulet ;
Parau, Emilian I. .
APPLIED OCEAN RESEARCH, 2019, 89 :202-210
[10]   The Whitham equation with surface tension [J].
Dinvay, Evgueni ;
Moldabayev, Daulet ;
Dutykh, Denys ;
Kalisch, Henrik .
NONLINEAR DYNAMICS, 2017, 88 (02) :1125-1138