VAC-Net: Visual Attention Consistency Network for Person Re-identification

被引:1
作者
Shi, Weidong [1 ]
Zhang, Yunzhou [1 ]
Zhu, Shangdong [1 ]
Liu, Yixiu [1 ]
Coleman, Sonya [2 ]
Kerr, Dermot [2 ]
机构
[1] Northeastern Univ, Shenyang, Liaoning, Peoples R China
[2] Univ Ulster, York St, Belfast, Antrim, North Ireland
来源
PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022 | 2022年
基金
中国国家自然科学基金;
关键词
Person re-identification; Viewpoint change; Scale variations; Visual attention;
D O I
10.1145/3512527.3531409
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person re-identification (ReID) is a crucial aspect of recognising pedestrians across multiple surveillance cameras. Even though significant progress has been made in recent years, the viewpoint change and scale variations still affect model performance. In this paper, we observe that it is beneficial for the model to handle the above issues when boost the consistent feature extraction capability among different transforms (e.g., flipping and scaling) of the same image. To this end, we propose a visual attention consistency network (VAC-Net). Specifically, we propose Embedding Spatial Consistency (ESC) architecture with flipping, scaling and original forms of the same image as inputs to learn a consistent embedding space. Furthermore, we design an Input-Wise visual attention consistent loss (IW-loss) so that the class activation maps(CAMs) from the three transforms are aligned with each other to enforce their advanced semantic information remains consistent. Finally, we propose a Layer-Wise visual attention consistent loss (LW-loss) to further enforce the semantic information among different stages to be consistent with the CAMs within each branch. These two losses can effectively improve the model to address the viewpoint and scale variations. Experiments on the challenging Market-1501, DukeMTMC-reID, and MSMT17 datasets demonstrate the effectiveness of the proposed VAC-Net.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 47 条
[1]   Multi-Level Factorisation Net for Person Re-Identification [J].
Chang, Xiaobin ;
Hospedales, Timothy M. ;
Xiang, Tao .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2109-2118
[2]   Mixed High-Order Attention Network for Person Re-Identification [J].
Chen, Binghui ;
Deng, Weihong ;
Hu, Jiani .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :371-381
[3]   Person Re-Identification by Deep Learning Multi-Scale Representations [J].
Chen, Yanbei ;
Zhu, Xiatian ;
Gong, Shaogang .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2590-2600
[4]  
Dieleman S, 2016, PR MACH LEARN RES, V48
[5]   Deep feature learning with relative distance comparison for person re-identification [J].
Ding, Shengyong ;
Lin, Liang ;
Wang, Guangrun ;
Chao, Hongyang .
PATTERN RECOGNITION, 2015, 48 (10) :2993-3003
[6]   Object Detection with Discriminatively Trained Part-Based Models [J].
Felzenszwalb, Pedro F. ;
Girshick, Ross B. ;
McAllester, David ;
Ramanan, Deva .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1627-1645
[7]  
Fu Y, 2019, AAAI CONF ARTIF INTE, P8295
[8]  
Gray D., 2007, IEEE INT WORKSH PERF
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Hermans A, 2017, Arxiv, DOI arXiv:1703.07737