The structure of Whitney blocks

被引:2
作者
Elena Aguilera, Maria [1 ]
Illanes, Alejandro [2 ]
机构
[1] Ctr Bachillerato Tecnol Ind & Serv 94, Periodista Roberto Pita Cornejo 17, Patzcuaro 61607, Mich, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Cd Univ, Mexico City 04510, DF, Mexico
关键词
Arc; Arc-like; Circle-like; Continuum; Hyperspace; Simple closed curve; Simple triod; Whitney block; Whitney level; Whitney map;
D O I
10.1016/j.topol.2016.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a metric continuum and C(X) the hyperspace of subcontinua of X. A Whitney block is a set of the form mu(-1)([s,t]), where mu : C(X) -> [0, 1] is a Whitney map and 0 <= s < t < 1. In this paper we study continua for which Whitney blocks are homeomorphic to X x [0, 1]. We characterize an arc, a simple closed curve and simple n-ods in terms of Whitney blocks. We also show that if X is arc-like, then each Whitney block for C(X) is 2-cell-like; and if X is circle-like, then each Whitney block of the form mu(-1)([0, t]) is ring-like. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 6 条
[1]  
Aguilera M. E., PREPRINT
[2]  
Hurewicz W., 1948, Dimension Theory
[3]  
Illanes A., 1999, Monographs and Textbooks in Pure and Applied Mathematics, V216
[4]  
Illanes A., 2007, MONOGRAPHS TXB PURE, V19, P45
[5]  
Martinez-de-la-Vega V, 2006, HOUSTON J MATH, V32, P783
[6]  
Nadler Jr S. B., 1978, Monogr. Textbooks Pure Appl. Math., V49