LIMIT OF THE INFINITE HORIZON DISCOUNTED HAMILTON-JACOBI EQUATION

被引:23
作者
Iturriaga, Renato [1 ]
Sanchez-Morgado, Hector [2 ]
机构
[1] CIMAT, Guanajuato 3600, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2011年 / 15卷 / 03期
关键词
Hamilton-Jacobi equation; LAGRANGIAN SYSTEMS; KAM SOLUTIONS; EXISTENCE;
D O I
10.3934/dcdsb.2011.15.623
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the in finite horizon discounted problem, we study the convergence of solutions of the Hamilton Jacobi equation when the discount vanishes. If the Aubry set consists in a finite number of hyperbolic critical points, we give an explicit expression for the limit. Additionaly, we give a new characterization of Mane's critical value as for wich the set of viscosity solutions is equibounded.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 14 条
[1]  
Anantharaman N, 2005, DISCRETE CONT DYN-B, V5, P513
[2]  
[Anonymous], 1994, MATH APPL
[3]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[4]   Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds [J].
Bernard, Patrick .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (03) :445-452
[5]   Action potential and weak KAM solutions [J].
Contreras, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (04) :427-458
[6]  
Contreras G., 1999, 22 COL BRAS MAT I MA
[7]   Weak conjugate KAM solutions and Peierls's barriers [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :649-652
[8]   A weak KAM theorem and Mather's theory of Lagrangian systems [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09) :1043-1046
[9]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[10]   Existence of C1 critical subsolutions of the Hamilton-Jacobi equation [J].
Fathi, A ;
Siconolfi, A .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :363-388