Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains

被引:8
作者
Ertzbischoff, Lucas [1 ]
Han-Kwan, Daniel [1 ]
Moussa, Ayman [2 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
[2] Univ Paris Diderot, Sorbonne Univ, CNRS, INRIA,Lab Jacques Louis Lions LILL, F-75005 Paris, France
关键词
fluid-kinetic system; Vlasov-Navier-Stokes; large time behaviour; GLOBAL EXISTENCE; AEROSOL FLOWS; EQUATIONS; PARTICLES; DERIVATION; SEDIMENTATION;
D O I
10.1088/1361-6544/ac1558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behaviour of small data solutions to the Vlasov-Navier-Stokes system set on Omega x R-3, for a smooth bounded domain Omega of R-3, with homogeneous Dirichlet boundary condition for the fluid and absorption boundary condition for the kinetic phase. We prove that the fluid velocity homogenizes to 0 while the distribution function concentrates towards a Dirac mass in velocity centred at 0, with an exponential rate. The proof, which follows the methods introduced in Han-Kwan et al (2020 Arch. Ration. Mech. Anal. 236 1273-323), requires a careful analysis of the boundary effects. We also exhibit examples of classes of initial data leading to a variety of asymptotic behaviours for the kinetic density, from total absorption to no absorption at all.
引用
收藏
页码:6843 / 6900
页数:58
相关论文
共 33 条
[1]  
[Anonymous], 2001, Encyclopedia of Mathematics and its Applications
[2]  
[Anonymous], 1998, Japan J. Indust. Appl. Math., V15, P51
[3]  
Anoshchenko O, 1997, MATH METHOD APPL SCI, V20, P495, DOI 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO
[4]  
2-O
[5]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[6]   A DERIVATION OF THE VLASOV-STOKES SYSTEM FOR AEROSOL FLOWS FROM THE KINETIC THEORY OF BINARY GAS MIXTURES [J].
Bernard, Etienne ;
Desvillettes, Laurent ;
Golse, Francois ;
Ricci, Valeria .
KINETIC AND RELATED MODELS, 2018, 11 (01) :43-69
[7]   A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY [J].
Bernard, Etienne ;
Desvillettes, Laurent ;
Golse, Francois ;
Ricci, Valeria .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) :1703-1741
[8]   Global existence of weak solutions to the incompressible Vlasov-Navier-Stokes system coupled to convection-diffusion equations [J].
Boudin, Laurent ;
Michel, David ;
Moussa, Ayman .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (08) :1485-1515
[9]   Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain [J].
Boudin, Laurent ;
Grandmont, Celine ;
Moussa, Ayman .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1317-1340
[10]  
Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247