Extreme eigenvalue distributions of some complex correlated non-central Wishart and gamma-Wishart random matrices

被引:10
作者
Dharmawansa, Prathapasinghe [1 ]
McKay, Matthew R. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Non-central Wishart matrix; Eigenvalue distribution; Hypergeometric function; PERFORMANCE ANALYSIS; MIMO-MRC; CAPACITY; POLYNOMIALS; SYSTEMS; ROOTS;
D O I
10.1016/j.jmva.2011.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let W be a correlated complex non-central Wishart matrix defined through W = (XX)-X-H, where X is an n x m (n >= m) complex Gaussian with non-zero mean Gamma and non-trivial covariance Sigma. We derive exact expressions for the cumulative distribution functions (c.d.f.s) of the extreme eigenvalues (i.e., maximum and minimum) of W for some particular cases. These results are quite simple, involving rapidly converging infinite series, and apply for the practically important case where Gamma has rank one. We also derive analogous results for a certain class of gamma-Wishart random matrices, for which Gamma(H)Gamma follows a matrix-variate gamma distribution. The eigenvalue distributions in this paper have various applications to wireless communication systems, and arise in other fields such as econometrics, statistical physics, and multivariate statistics. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:847 / 868
页数:22
相关论文
共 56 条
[1]   A Theoretical Framework for LMS MIMO Communication Systems Performance Analysis [J].
Alfano, Giuseppa ;
De Maio, Antonio ;
Tulino, Antonia Maria .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (11) :5614-5630
[2]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[3]  
[Anonymous], 1984, Zonal polynomials
[4]  
BOLCSKEI H, IEEE J SEL AREAS COM, V21, P427
[5]   EXPONENTIAL ENSEMBLE FOR RANDOM MATRICES [J].
BRONK, BV .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :228-&
[6]  
CAROLOPERA FJ, ZASTOS MAT, V34, P113
[7]   Some eigenvalue distribution functions of the Laguerre ensemble [J].
Chen, Y ;
Manning, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23) :7561-7579
[8]   On the capacity of spatially correlated MIMO Rayleigh-fading channels [J].
Chiani, M ;
Win, MZ ;
Zanella, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) :2363-2371
[9]   GENERALIZED NONCENTRAL HERMITE AND LAGUERRE-POLYNOMIALS IN MULTIPLE MATRICES [J].
CHIKUSE, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 210 :209-226
[10]  
Chikuse Y., 1986, ECON THEOR, V2, P232, DOI [10.1017/S0266466600011518, DOI 10.1017/S0266466600011518]