Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation

被引:70
作者
Dyson, Beth C. [1 ]
Allwood, J. William [2 ,3 ]
Feil, Regina [4 ]
Xu, Yun [2 ,3 ]
Miller, Matthew [1 ]
Bowsher, Caroline G. [1 ]
Goodacre, Royston [2 ,3 ]
Lunn, John E. [4 ]
Johnson, Giles N. [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
[2] Univ Manchester, Sch Chem, Manchester M1 7DN, Lancs, England
[3] Univ Manchester, Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England
[4] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
基金
英国生物技术与生命科学研究理事会; 英国自然环境研究理事会;
关键词
high light; sugar signalling; photosynthesis; GAS-CHROMATOGRAPHY; GENE-EXPRESSION; RAPID IDENTIFICATION; PHOTOSYNTHESIS; PHOSPHATE; CHLOROPLAST; IRRADIANCE; INHIBITION; TEMPERATURE; INCREASES;
D O I
10.1111/pce.12495
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In Arabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6-phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild-type plants (35%); however, over subsequent days, wild-type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7d. Wild-type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6-phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short-term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild-type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals. Acclimation to changes in the environment are crucial to optimising plant growth and productivity. In Arabidopsis thaliana, the glucose-6-phosphate/phosphate translocator GPT2 plays an important role in the acclimation to increased irradiance. Here we show that expression of GPT2 influences the partitioning of carbon between different storage pools, enhancing starch synthesis. Acclimation of metabolism occurs but is distinct in plants expressing or lacking GPT2.y
引用
收藏
页码:1404 / 1417
页数:14
相关论文
共 65 条
[1]   Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics [J].
Allwood, J. William ;
Erban, Alexander ;
de Koning, Sjaak ;
Dunn, Warwick B. ;
Luedemann, Alexander ;
Lommen, Arjen ;
Kay, Lorraine ;
Loescher, Ralf ;
Kopka, Joachim ;
Goodacre, Royston .
METABOLOMICS, 2009, 5 (04) :479-496
[2]   Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea [J].
Allwood, JW ;
Ellis, DI ;
Heald, JK ;
Goodacre, R ;
Mur, LAJ .
PLANT JOURNAL, 2006, 46 (03) :351-368
[3]   Dynamic Acclimation of Photosynthesis Increases Plant Fitness in Changing Environments [J].
Athanasiou, Kleovoulos ;
Dyson, Beth C. ;
Webster, Rachel E. ;
Johnson, Giles N. .
PLANT PHYSIOLOGY, 2010, 152 (01) :366-373
[4]   Acclimation of Arabidopsis thaliana to the light environment:: the existence of separate low light and high light responses [J].
Bailey, S ;
Walters, RG ;
Jansson, S ;
Horton, P .
PLANTA, 2001, 213 (05) :794-801
[5]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[6]   Keeping up with the neighbours:: phytochrome sensing and other signalling mechanisms [J].
Ballaré, CL .
TRENDS IN PLANT SCIENCE, 1999, 4 (03) :97-102
[7]   Development and Performance of a Gas Chromatography-Time-of-Flight Mass Spectrometry Analysis for Large-Scale Nontargeted Metabolomic Studies of Human Serum [J].
Begley, Paul ;
Francis-McIntyre, Sue ;
Dunn, Warwick B. ;
Broadhurst, David I. ;
Halsall, Antony ;
Tseng, Andy ;
Knowles, Joshua ;
Goodacre, Royston ;
Kell, Douglas B. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7038-7046
[8]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[9]   Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics [J].
Brown, M. ;
Dunn, W. B. ;
Dobson, P. ;
Patel, Y. ;
Winder, C. L. ;
Francis-McIntyre, S. ;
Begley, P. ;
Carroll, K. ;
Broadhurst, D. ;
Tseng, A. ;
Swainston, N. ;
Spasic, I. ;
Goodacre, R. ;
Kell, D. B. .
ANALYST, 2009, 134 (07) :1322-1332
[10]  
Cho Y. -H., 2010, PLANT PHYSIOL, V158, P1955