MAVEN Observations of Low Frequency Steepened Magnetosonic Waves and Associated Heating of the Martian Nightside Ionosphere

被引:17
作者
Fowler, C. M. [1 ,2 ]
Hanley, K. G. [1 ]
McFadden, J. P. [1 ]
Chaston, C. C. [1 ]
Bonnell, J. W. [1 ]
Halekas, J. S. [3 ]
Espley, J. R. [4 ]
DiBraccio, G. A. [4 ]
Schwartz, S. J. [5 ]
Mazelle, C. [6 ]
Mitchell, D. L. [1 ]
Xu, S. [1 ]
Lillis, R. J. [1 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Lab Atmospher & Space Phys, Boulder, CO USA
[6] Univ Toulouse, CNRS UPS CNES, IRAP, Toulouse, France
关键词
magnetosonic waves; Mars; Mars ionosphere; steepened magnetosonic waves; wave particle interactions; AMPLITUDE ULF WAVES; SOLAR-WIND; MAGNETIC-FIELD; BOW SHOCK; MARS; ION; VENUS; UPSTREAM; DAYSIDE; ACCELERATION;
D O I
10.1029/2021JA029615
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of low frequency steepened fast magnetosonic waves in the Martian magnetosphere and ionosphere. Solar wind pressure pulses generated in the upstream foreshock region impact the magnetopause and generate the magnetosonic waves within the magnetosphere, in a process analogous to the production of magnetic Pc pulsations in the terrestrial magnetosphere. The draped nature of the IMF about Mars, combined with the near-perpendicular propagation of these waves across the magnetic field, act to channel these waves into the nightside ionosphere, where they are observed in their non-linear steepened form. Coincident-in-time ion observations show that the light (H+) and heavy (O+, O-2(+), CO2+) planetary ion distribution functions possess significant suprathermal energetic tails, arising from wave-particle interactions with the steepened waves. The short gyro period and small gyro radius of the protons, relative to the steepened waves, results in proton heating via adiabatic compression. In contrast, the long gyro period of the heavy ions relative to the wave frequency leads to nonadiabatic heating via wave-trapping processes. The light and heavy ion species are heated above escape energy by these waves, even down close to the exobase. A limited statistical study of 101 neighboring orbits found that similar wave events occurred on 28% of orbits analyzed, suggesting that such wave-heating events may be important drivers of the Mars nightside ionospheric dynamics and energy budget. Our discussion includes placing our results in the context of solar wind energy transfer to the ionospheres of unmagnetized and magnetized bodies in general.
引用
收藏
页数:25
相关论文
共 81 条
  • [1] Using Magnetic Topology to Probe the Sources of Mars' Nightside Ionosphere
    Adams, D.
    Xu, S.
    Mitchell, D. L.
    Lillis, R. L.
    Fillingim, M.
    Andersson, L.
    Fowler, C.
    Connerney, J. E. P.
    Espley, J.
    Mazelle, C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (22) : 12190 - 12197
  • [2] The Langmuir Probe and Waves (LPW) Instrument for MAVEN
    Andersson, L.
    Ergun, R. E.
    Delory, G. T.
    Eriksson, A.
    Westfall, J.
    Reed, H.
    McCauly, J.
    Summers, D.
    Meyers, D.
    [J]. SPACE SCIENCE REVIEWS, 2015, 195 (1-4) : 173 - 198
  • [3] Theories and observations of ion energization and outflow in the high latitude magnetosphere
    Andre, M
    Yau, A
    [J]. SPACE SCIENCE REVIEWS, 1997, 80 (1-2) : 27 - 48
  • [4] [Anonymous], 2004, Physics of Solar System Plasmas
  • [5] [Anonymous], 2012, BASIC SPACE PLASMA P, DOI DOI 10.1142/9789811254062_0001
  • [6] The Induced Magnetospheres of Mars, Venus, and Titan
    Bertucci, C.
    Duru, F.
    Edberg, N.
    Fraenz, M.
    Martinecz, C.
    Szego, K.
    Vaisberg, O.
    [J]. SPACE SCIENCE REVIEWS, 2011, 162 (1-4) : 113 - 171
  • [7] Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere
    Bougher, S. W.
    Pawlowski, D.
    Bell, J. M.
    Nelli, S.
    McDunn, T.
    Murphy, J. R.
    Chizek, M.
    Ridley, A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2015, 120 (02) : 311 - 342
  • [8] Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock -: art. no. 1076
    Brain, DA
    Bagenal, F
    Acuña, MH
    Connerney, JEP
    Crider, DH
    Mazelle, C
    Mitchell, DL
    Ness, NF
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A6)
  • [9] The magnetic field draping direction at Mars from April 1999 through August 2004
    Brain, David A.
    Mitchell, David L.
    Halekas, Jasper S.
    [J]. ICARUS, 2006, 182 (02) : 464 - 473
  • [10] Characteristics of electromagnetic proton cyclotron waves along auroral field lines observed by FAST in regions of upward current
    Chaston, CC
    Ergun, RE
    Delory, GT
    Peria, W
    Temerin, M
    Cattell, C
    Strangeway, R
    McFadden, JP
    Carlson, CW
    Elphic, RC
    Klumpar, DM
    Peterson, WK
    Moebius, E
    Pfaff, R
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (12) : 2057 - 2060