Maximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture model

被引:62
作者
Fang, HB
Li, G [1 ]
Sun, JG
机构
[1] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[2] Univ Maryland, Greenebaum Canc Ctr, College Pk, MD 20742 USA
[3] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
关键词
asymptotic normality; censoring; consistency; Cox's model; cure model; cure rate; logistic regression; mixture model; variance estimation;
D O I
10.1111/j.1467-9469.2005.00415.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider large sample inference in a semiparametric logistic/proportional-hazards mixture model. This model has been proposed to model survival data where there exists a positive portion of subjects in the population who are not susceptible to the event under consideration. Previous studies of the logistic/proportional-hazards mixture model have focused on developing point estimation procedures for the unknown parameters. This paper studies large sample inferences based on the semiparametric maximum likelihood estimator. Specifically, we establish existence, consistency and asymptotic normality results for the semiparametric maximum likelihood estimator. We also derive consistent variance estimates for both the parametric and non-parametric components. The results provide a theoretical foundation for making large sample inference under the logistic/proportional-hazards mixture model.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 23 条
[1]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[2]   PARAMETRIC VERSUS NONPARAMETRIC METHODS FOR ESTIMATING CURE RATES BASED ON CENSORED SURVIVAL-DATA [J].
CANTOR, AB ;
SHUSTER, JJ .
STATISTICS IN MEDICINE, 1992, 11 (07) :931-937
[3]  
Collett D, 1991, MODELLING BINARY DAT
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]   THE USE OF MIXTURE-MODELS FOR THE ANALYSIS OF SURVIVAL-DATA WITH LONG-TERM SURVIVORS [J].
FAREWELL, VT .
BIOMETRICS, 1982, 38 (04) :1041-1046
[6]   MIXTURE-MODELS IN SURVIVAL ANALYSIS - ARE THEY WORTH THE RISK [J].
FAREWELL, VT .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (03) :257-262
[7]   EXPONENTIAL MIXTURE-MODELS WITH LONG-TERM SURVIVORS AND COVARIATES [J].
GHITANY, ME ;
MALLER, RA ;
ZHOU, S .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (02) :218-241
[8]  
Huang J, 1996, ANN STAT, V24, P540
[9]   A MIXTURE MODEL COMBINING LOGISTIC-REGRESSION WITH PROPORTIONAL HAZARDS REGRESSION [J].
KUK, AYC ;
CHEN, CH .
BIOMETRIKA, 1992, 79 (03) :531-541
[10]  
LARSON MG, 1985, APPL STAT-J ROY ST C, V34, P201