Approximate transitivity for zero-entropy systems

被引:5
作者
Dooley, A [1 ]
Quas, A
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
10.1017/S0143385704000525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Morse system is approximately transitive (AT) and that a system of positive entropy cannot be AT. We give examples of zero-entropy systems that are not AT, one of which is a two-point extension of a system that is AT.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1981, TOPICS ERGODIC THEOR
[2]  
Connes A., 1985, ERGOD THEOR DYN SYST, V5, P203
[3]  
DAVID MC, 1979, THESIS PARIS
[4]  
DELJUNCO A, 1976, CAN J MATH, V28, P836
[5]  
DELJUNCO A, 1977, CAN J MATH, V29, P655
[6]  
FERENCZI S, 1985, ANN I H POINCARE-PR, V21, P177
[7]   TILING AND LOCAL RANK PROPERTIES OF THE MORSE SEQUENCE [J].
FERENCZI, S .
THEORETICAL COMPUTER SCIENCE, 1994, 129 (02) :369-383
[8]  
Ferenczi S., 1997, C MATH, V73, P35
[9]   STRICT ERGODICITY AND TRANSFORMATION OF TORUS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (04) :573-&
[10]  
Furstenberg H., 1981, RECURRENCE ERGODIC T