Infinitely many solutions to a quasilinear Schrodinger equation with a local sublinear term

被引:8
作者
Liang, Zhanping [1 ]
Gao, Jinfeng [1 ]
Li, Anran [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Local sublinear term; Infinitely many nontrivial solutions; Variational methods; SOLITON-SOLUTIONS; THEOREM;
D O I
10.1016/j.aml.2018.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the quasilinear Schrodinger equation -Delta u + V(x)u - Delta[(1+u(2))(1/2)] u/2(1 + u(2))(1/2) = K(x) f(x), x is an element of R-N, where N >= 3. Under appropriate assumptions on the potentials V and K and local sublinear growth assumptions on the nonlinear term f, we get the existence of infinitely many nontrivial solutions by using a revised Clark theorem and a priori estimate of the solution. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 10 条
[1]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[2]   Existence of positive solutions for a quasilinear Schrodinger equation [J].
Chu, Changmu ;
Liu, Haidong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 :118-127
[3]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[4]   POSITIVE GROUND STATE SOLUTIONS FOR A QUASILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT [J].
Deng, Yinbin ;
Huang, Wentao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) :4213-4230
[5]   EVOLUTION THEOREM FOR A CLASS OF PERTURBED ENVELOPE SOLITON-SOLUTIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
STENFLO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2764-2769
[6]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493
[7]   On Clark's theorem and its applications to partially sublinear problems [J].
Liu, Zhaoli ;
Wang, Zhi-Qiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (05) :1015-1037
[8]   Soliton solutions for generalized quasilinear Schrodinger equations [J].
Shen, Yaotian ;
Wang, Youjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :194-201
[9]  
Silva Elves A.B., 2010, CALC VAR PARTIAL DIF, V39, P1
[10]   Solutions of a Schrodinger-Poisson system with combined nonlinearities [J].
Sun, Mingzheng ;
Su, Jiabao ;
Zhao, Leiga .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) :385-403