In situ TEM investigation on void coalescence in metallic materials

被引:12
作者
Gao, Bo [1 ]
Xiang, Qian [2 ]
Guo, Tianfu [3 ]
Guo, Xu [4 ]
Tang, Shan [4 ]
Huang, Xiao Xu [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400017, Peoples R China
[2] Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Peoples R China
[3] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[4] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Int Res Ctr Computat Mech, Dept Engn Mech, Dalian 116023, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 734卷
关键词
Void coalescence; Nanotwins; Shear bands; Multiscale model; DUAL-PHASE STEEL; DUCTILE FRACTURE; GROWTH; SHEAR; SIMULATION; DAMAGE; MODEL; DEFORMATION; SOLIDS; STRAIN;
D O I
10.1016/j.msea.2018.07.064
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
More precise modeling on ductile fracture of metals at the scale from micron to meter is still urgently needed in many engineering applications. Due to the variety of metal and its alloys, a lack of understanding on the mechanisms and quantitative experimental data impede building and assessing mechanics models for ductile fracture at different length scales. In this paper, in situ tensile tests are carried out in Transmission Electronic Microscope (TEM) on copper, high entropy alloy and aluminium alloy. We examine the full process of void growth and coalescence of neighboring voids under the view of the TEM. Nanotwins on the ligament between neighboring voids lead to a new coalescence mechanism for copper and high entropy alloy. Necking and shearing coalescence of aluminium alloys are clearly illustrated, which are demonstrated by the samples with manually drilled hole before by SEM (Scanning Electronic Microscope). The quantitative data on the evolution of void geometry are recorded, and are then used to verify the existing coalescence models in the literature. It is found that the McClintock model for void coalescence provides a better prediction than the Brown-Embury model (including the modified Brown-Embury model). A multiscale homogenization framework for in situ experiments can be further used to extract the stress state around the voids, and explaining the importance of stress-state on cavitation/nucleation, growth and coalescence of voids.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 41 条
[1]  
Anderson - T.L., 1991, FRACTURE MECH FUNDAM
[2]   DYNAMIC RECRYSTALLIZATION IN HIGH-STRAIN, HIGH-STRAIN-RATE PLASTIC-DEFORMATION OF COPPER [J].
ANDRADE, U ;
MEYERS, MA ;
VECCHIO, KS ;
CHOKSHI, AH .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (09) :3183-3195
[3]   On fracture locus in the equivalent strain and stress triaxiality space [J].
Bao, YB ;
Wierzbicki, T .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2004, 46 (01) :81-98
[4]   Rupture mechanisms in combined tension and shear - Micromechanics [J].
Barsoum, Imad ;
Faleskog, Jonas .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (17) :5481-5498
[5]   Ductile failure modeling [J].
Benzerga, Ahmed Amine ;
Leblond, Jean-Baptiste ;
Needleman, Alan ;
Tvergaard, Viggo .
INTERNATIONAL JOURNAL OF FRACTURE, 2016, 201 (01) :29-80
[6]   A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality [J].
Bessa, M. A. ;
Bostanabad, R. ;
Liu, Z. ;
Hu, A. ;
Apley, Daniel W. ;
Brinson, C. ;
Chen, W. ;
Liu, Wing Kam .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 :633-667
[7]   The Sandia Fracture Challenge: blind round robin predictions of ductile tearing [J].
Boyce, B. L. ;
Kramer, S. L. B. ;
Fang, H. E. ;
Cordova, T. E. ;
Neilsen, M. K. ;
Dion, K. ;
Kaczmarowski, A. K. ;
Karasz, E. ;
Xue, L. ;
Gross, A. J. ;
Ghahremaninezhad, A. ;
Ravi-Chandar, K. ;
Lin, S. -P. ;
Chi, S. -W. ;
Chen, J. S. ;
Yreux, E. ;
Ruter, M. ;
Qian, D. ;
Zhou, Z. ;
Bhamare, S. ;
O'Connor, D. T. ;
Tang, S. ;
Elkhodary, K. I. ;
Zhao, J. ;
Hochhalter, J. D. ;
Cerrone, A. R. ;
Ingraffea, A. R. ;
Wawrzynek, P. A. ;
Carter, B. J. ;
Emery, J. M. ;
Veilleux, M. G. ;
Yang, P. ;
Gan, Y. ;
Zhang, X. ;
Chen, Z. ;
Madenci, E. ;
Kilic, B. ;
Zhang, T. ;
Fang, E. ;
Liu, P. ;
Lua, J. ;
Nahshon, K. ;
Miraglia, M. ;
Cruce, J. ;
DeFrese, R. ;
Moyer, E. T. ;
Brinckmann, S. ;
Quinkert, L. ;
Pack, K. ;
Luo, M. .
INTERNATIONAL JOURNAL OF FRACTURE, 2014, 186 (1-2) :5-68
[8]  
Brown M., 1973, P 3 INT C STRENGTH M, P164
[9]   VOID FORMATION, VOID GROWTH AND TENSILE FRACTURE OF PLAIN CARBON-STEEL AND A DUAL-PHASE STEEL [J].
HAN, SK ;
MARGOLIN, H .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 112 :133-141
[10]  
Hombogen E., 1993, ACTA METALL MATER, V41-1, P1