A Scalable Nickel-Cellulose Hybrid Metamaterial with Broadband Light Absorption for Efficient Solar Distillation

被引:89
作者
Yuan, Yang [1 ]
Dong, Changlin [1 ]
Gu, Jiajun [1 ]
Liu, Qinglei [1 ]
Xu, Jian [2 ]
Zhou, Chenxin [1 ]
Song, Guofen [1 ]
Chen, Wenshu [1 ]
Yao, Lulu [1 ]
Zhang, Di [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat, MOE, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
broadband absorbers; hybrid metamaterials; nanoconfinement synthesis; solar energy; water treatment; NANOPARTICLES; OPPORTUNITIES; FABRICATION; ENERGY;
D O I
10.1002/adma.201907975
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sophisticated metastructures are usually required to broaden the inherently narrowband plasmonic absorption of light for applications such as solar desalination, photodetection, and thermoelectrics. Here, nonresonant nickel nanoparticles (diameters < 20 nm) are embedded into cellulose microfibers via a nanoconfinement effect, producing an intrinsically broadband metamaterial with 97.1% solar-weighted absorption. Interband transitions rather than plasmonic resonance dominate the optical absorption throughout the solar spectrum due to a high density of electronic states near the Fermi level of nickel. Field solar purification of sewage and seawater based on the metamaterial demonstrates high solar-to-water efficiencies of 47.9-65.8%. More importantly, the solution-processed metamaterial is mass-producible (1.8 x 0.3 m(2)), low-cost, flexible, and durable (even effective after 7 h boiling in water), which are critical to the commercialization of portable solar-desalination and domestic-water-purification devices. This work also broadens material choices beyond plasmonic metals for the light absorption in photothermal and photocatalytic applications.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] Emerging opportunities for nanotechnology to enhance water security
    Alvarez, Pedro J. J.
    Chan, Candace K.
    Elimelech, Menachem
    Halas, Naomi J.
    Villagan, Dino
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (08) : 634 - 641
  • [2] [Anonymous], 2018, Guidelines for Drinking Water Quality, DOI DOI 10.101651462-0758(00)00006-6
  • [3] Ashcroft N. W., 1976, SOLID STATE PHYS
  • [4] Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
    Aslam, Umar
    Rao, Vishal Govind
    Chavez, Steven
    Linic, Suljo
    [J]. NATURE CATALYSIS, 2018, 1 (09): : 656 - 665
  • [5] Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
    Aydin, Koray
    Ferry, Vivian E.
    Briggs, Ryan M.
    Atwater, Harry A.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [6] Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation
    Bae, Kyuyoung
    Kang, Gumin
    Cho, Suehyun K.
    Park, Wounjhang
    Kim, Kyoungsik
    Padilla, Willie J.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] Challenges and Opportunities for Solar Evaporation
    Chen, Chaoji
    Kuang, Yudi
    Hu, Liangbing
    [J]. JOULE, 2019, 3 (03) : 683 - 718
  • [8] Dielectric constants of Ir, Ru, Pt, and IrO2:: Contributions from bound charges
    Choi, W. S.
    Seo, S. S. A.
    Kim, K. W.
    Noh, T. W.
    Kim, M. Y.
    Shin, S.
    [J]. PHYSICAL REVIEW B, 2006, 74 (20)
  • [9] Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation
    Gao, Minmin
    Peh, Connor Kangnuo
    Huy Thong Phan
    Zhu, Liangliang
    Ho, Ghim Wei
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (25)
  • [10] Grosso G., 2014, SOLID STATE PHYS