The zero-free intervals for characteristic polynomials of matroids

被引:8
作者
Edwards, H [1 ]
Hierons, R [1 ]
Jackson, B [1 ]
机构
[1] Univ London Goldsmiths Coll, Dept Math & Comp Sci, London SE14 6NW, England
关键词
D O I
10.1017/S0963548398003381
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let M be a loopless matroid with rank r and c components. Let P(M, t) be the characteristic polynomial of M. We shall show that (-1)P-r (M,t) greater than or equal to (1 - t)(r) for t is an element of (-infinity, 1), that the multiplicity of the zeros of P(M, t) at t = 1 is equal to c, and that (1)Pr+c(M, t) greater than or equal to (t - 1)(r) for t is an element of (1, 32/27]. Using a result of C. Thomassen we deduce that the maximal zero-free intervals for characteristic polynomials of loopless matroids are precisely (-infinity, 1) and (1, 32/27].
引用
收藏
页码:153 / 165
页数:13
相关论文
共 12 条
[1]   COMBINATORIAL MODEL FOR SERIES-PARALLEL NETWORKS [J].
BRYLAWSKI, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 154 (FEB) :1-+
[2]   DECOMPOSITION FOR COMBINATORIAL GEOMETRIES [J].
BRYLAWSKI, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 171 (SEP) :235-282
[3]  
HERON AP, 1972, COMBINATORICA, P164
[4]  
Jackson B., 1993, COMB PROBAB COMPUT, V2, P325, DOI DOI 10.1017/S0963548300000705
[5]  
Oxley J., 1993, MATROID THEORY
[6]  
Rota G.C., 1964, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, V2, P340, DOI DOI 10.1007/BF00531932
[7]   DECOMPOSITION OF REGULAR MATROIDS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (03) :305-359
[8]  
Thomassen C., 1997, Combinatorics, Probability and Computing, V6, P497, DOI 10.1017/S0963548397003131
[9]  
TUTTE W. T., 1974, LECT NOTES MATH, V411, P243
[10]   CONNECTIVITY IN MATROIDS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (06) :1301-&