Molecular mechanisms underlying responses of the Antarctic coral Malacobelemnon daytoni to ocean acidification

被引:13
作者
Servetto, N. [1 ,2 ]
de Aranzamendi, M. C. [1 ,2 ]
Bettencourt, R. [3 ]
Held, C. [4 ]
Abele, D. [4 ]
Movilla, J. [5 ]
Gonzalez, G. [1 ,2 ]
Bustos, D. M. [6 ,7 ]
Sahade, R. [1 ,2 ]
机构
[1] Univ Nacl Cordoba, Fac Ciencias Exactas Fis & Nat, Catedra Ecol Marina, Av Velez Sarsfield 299,X5000JJC, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn CONICET, Inst Diversidad & Ecol Anim IDEA, Ecosistemas Marinos Polares, Av Velez Sarsfield 299,X5000JJC, Cordoba, Argentina
[3] Univ Azores, Fac Sci & Technol, OKEANOS Marine Res Ctr, Dept Oceanog & Fisheries, P-9900862 Horta, Portugal
[4] Alfred Wegener Inst, Zentrum Polar & Meeresforsch, Handelshafen 12, D-27570 Bremerhaven, Germany
[5] Ctr Oceanog Baleares, Inst Espanol Oceanog, Estn Invest Jaume Ferrer, La Mola S-N, Menorca 07720, Spain
[6] Inst Histol & Embriol Mendoza IHEM CONICET UNCUYO, Lab Integrac Senales Celulares, Mendoza, Argentina
[7] Fac Ciencias Exactas & Nat UNCUYO, Mendoza, Argentina
关键词
Ocean acidification; Coral Malacobelemnon daytoni; Antarctica; Gene expression; SOLUBLE ADENYLYL-CYCLASE; KING GEORGE ISLAND; MYTILUS-GALLOPROVINCIALIS; ACROPORA-MILLEPORA; SEAWATER ACIDIFICATION; MARINE-INVERTEBRATES; CARBONIC-ANHYDRASES; ANTIOXIDANT ENZYMES; SATURATION STATE; SOUTHERN-OCEAN;
D O I
10.1016/j.marenvres.2021.105430
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 +/- 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO(2) conditions (ambient and elevated pCO(2) equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 mu atm, respectively). Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to LpH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.
引用
收藏
页数:13
相关论文
共 142 条
[1]   Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications [J].
Abele, D. ;
Vazquez, S. ;
Buma, A. G. J. ;
Hernandez, E. ;
Quiroga, C. ;
Held, C. ;
Frickenhaus, S. ;
Harms, L. ;
Lopez, J. L. ;
Helmke, E. ;
Mac Cormack, W. P. .
MARINE GENOMICS, 2017, 33 :1-11
[2]  
Aebi H., 1984, METHOD ENZYMOL, V105, P121
[3]   Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high PCO2 conditions [J].
Aguilera, Victor M. ;
Vargas, Cristian A. ;
Lardies, Marco A. ;
Poupin, Maria J. .
MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE, 2016, 37 (01) :215-226
[4]   Reversal of ocean acidification enhances net coral reef calcification [J].
Albright, Rebecca ;
Caldeira, Lilian ;
Hosfelt, Jessica ;
Kwiatkowski, Lester ;
Maclaren, Jana K. ;
Mason, Benjamin M. ;
Nebuchina, Yana ;
Ninokawa, Aaron ;
Pongratz, Julia ;
Ricke, Katharine L. ;
Rivlin, Tanya ;
Schneider, Kenneth ;
Sesbouee, Marine ;
Shamberger, Kathryn ;
Silverman, Jacob ;
Wolfe, Kennedy ;
Zhu, Kai ;
Caldeira, Ken .
NATURE, 2016, 531 (7594) :362-+
[5]  
Allemand D, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P119, DOI 10.1007/978-94-007-0114-4_9
[6]   Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential [J].
Appelhans, Yasmin S. ;
Thomsen, Joern ;
Opitz, Sebastian ;
Pansch, Christian ;
Melzner, Frank ;
Wahl, Martin .
MARINE ECOLOGY PROGRESS SERIES, 2014, 509 :227-239
[7]   Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas [J].
Appelhans, Yasmin S. ;
Thomsen, Joern ;
Pansch, Christian ;
Melzner, Frank ;
Wahl, Martin .
MARINE ECOLOGY PROGRESS SERIES, 2012, 459 :85-98
[8]   New ocean, new needs: Application of pteropod shell dissolution as a biological indicator for marine resource management [J].
Bednarsek, N. ;
Klinger, T. ;
Harvey, C. J. ;
Weisberg, S. ;
McCabe, R. M. ;
Feely, R. A. ;
Newton, J. ;
Tolimieri, N. .
ECOLOGICAL INDICATORS, 2017, 76 :240-244
[9]   Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response [J].
Bers, A. Valeria ;
Momo, Fernando ;
Schloss, Irene R. ;
Abele, Doris .
CLIMATIC CHANGE, 2013, 116 (3-4) :789-803
[10]   Carbonic anhydrases in anthozoan corals-A review [J].
Bertucci, Anthony ;
Moya, Aurelie ;
Tambutte, Sylvie ;
Allemand, Denis ;
Supuran, Claudiu T. ;
Zoccola, Didier .
BIOORGANIC & MEDICINAL CHEMISTRY, 2013, 21 (06) :1437-1450