Quantum entanglement recognition

被引:7
作者
Khoo, Jun Yong [1 ,2 ]
Heyl, Markus [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
欧洲研究理事会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; ENTROPY; QUTIP;
D O I
10.1103/PhysRevResearch.3.033135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement constitutes a key characteristic feature of quantum matter. Its detection, however, still faces major challenges. In this paper, we formulate a framework for probing entanglement based on machine learning techniques. The central element is a protocol for the generation of statistical images from quantum many-body states, with which we perform image classification by means of convolutional neural networks. We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error across a wide range of quantum states. We discuss the potential use of our scheme to quantify quantum entanglement in experiments. Our developed scheme provides a generally applicable strategy for quantum entanglement recognition in both equilibrium and nonequilibrium quantum matter.
引用
收藏
页数:10
相关论文
共 35 条
[21]   Quantum simulation of frustrated Ising spins with trapped ions [J].
Kim, K. ;
Chang, M. -S. ;
Korenblit, S. ;
Islam, R. ;
Edwards, E. E. ;
Freericks, J. K. ;
Lin, G. -D. ;
Duan, L. -M. ;
Monroe, C. .
NATURE, 2010, 465 (7298) :590-U81
[22]   Quantum-gas microscopes: a new tool for cold-atom quantum simulators [J].
Kuhr, Stefan .
NATIONAL SCIENCE REVIEW, 2016, 3 (02) :170-172
[23]   Quantum entanglement in condensed matter systems [J].
Laflorencie, Nicolas .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 646 :1-59
[24]   Entanglement in a Quantum Annealing Processor [J].
Lanting, T. ;
Przybysz, A. J. ;
Smirnov, A. Yu. ;
Spedalieri, F. M. ;
Amin, M. H. ;
Berkley, A. J. ;
Harris, R. ;
Altomare, F. ;
Boixo, S. ;
Bunyk, P. ;
Dickson, N. ;
Enderud, C. ;
Hilton, J. P. ;
Hoskinson, E. ;
Johnson, M. W. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Neufeld, R. ;
Oh, T. ;
Perminov, I. ;
Rich, C. ;
Thom, M. C. ;
Tolkacheva, E. ;
Uchaikin, S. ;
Wilson, A. B. ;
Rose, G. .
PHYSICAL REVIEW X, 2014, 4 (02)
[25]  
Lanyon BP, 2017, NAT PHYS, V13, P1158, DOI [10.1038/NPHYS4244, 10.1038/nphys4244]
[26]   Separability-entanglement classifier via machine learning [J].
Lu, Sirui ;
Huang, Shilin ;
Li, Keren ;
Li, Jun ;
Chen, Jianxin ;
Lu, Dawei ;
Ji, Zhengfeng ;
Shen, Yi ;
Zhou, Duanlu ;
Zeng, Bei .
PHYSICAL REVIEW A, 2018, 98 (01)
[27]   Probing entanglement in a many-body-localized system [J].
Lukin, Alexander ;
Rispoli, Matthew ;
Schittko, Robert ;
Tai, M. Eric ;
Kaufman, Adam M. ;
Choi, Soonwon ;
Khemani, Vedika ;
Leonard, Julian ;
Greiner, Markus .
SCIENCE, 2019, 364 (6437) :256-+
[28]   Transforming Bell's inequalities into state classifiers with machine learning [J].
Ma, Yue-Chi ;
Yung, Man-Hong .
NPJ QUANTUM INFORMATION, 2018, 4
[29]  
Mezzadri F., 2007, NOT AM MATH SOC, V54, P592
[30]  
Satzinger K. J., ARXIV210401180QUANTP ARXIV210401180QUANTP