Quantum entanglement recognition

被引:6
作者
Khoo, Jun Yong [1 ,2 ]
Heyl, Markus [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
欧洲研究理事会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; ENTROPY; QUTIP;
D O I
10.1103/PhysRevResearch.3.033135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement constitutes a key characteristic feature of quantum matter. Its detection, however, still faces major challenges. In this paper, we formulate a framework for probing entanglement based on machine learning techniques. The central element is a protocol for the generation of statistical images from quantum many-body states, with which we perform image classification by means of convolutional neural networks. We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error across a wide range of quantum states. We discuss the potential use of our scheme to quantify quantum entanglement in experiments. Our developed scheme provides a generally applicable strategy for quantum entanglement recognition in both equilibrium and nonequilibrium quantum matter.
引用
收藏
页数:10
相关论文
共 35 条
  • [21] Quantum simulation of frustrated Ising spins with trapped ions
    Kim, K.
    Chang, M. -S.
    Korenblit, S.
    Islam, R.
    Edwards, E. E.
    Freericks, J. K.
    Lin, G. -D.
    Duan, L. -M.
    Monroe, C.
    [J]. NATURE, 2010, 465 (7298) : 590 - U81
  • [22] Quantum-gas microscopes: a new tool for cold-atom quantum simulators
    Kuhr, Stefan
    [J]. NATIONAL SCIENCE REVIEW, 2016, 3 (02) : 170 - 172
  • [23] Quantum entanglement in condensed matter systems
    Laflorencie, Nicolas
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 646 : 1 - 59
  • [24] Entanglement in a Quantum Annealing Processor
    Lanting, T.
    Przybysz, A. J.
    Smirnov, A. Yu.
    Spedalieri, F. M.
    Amin, M. H.
    Berkley, A. J.
    Harris, R.
    Altomare, F.
    Boixo, S.
    Bunyk, P.
    Dickson, N.
    Enderud, C.
    Hilton, J. P.
    Hoskinson, E.
    Johnson, M. W.
    Ladizinsky, E.
    Ladizinsky, N.
    Neufeld, R.
    Oh, T.
    Perminov, I.
    Rich, C.
    Thom, M. C.
    Tolkacheva, E.
    Uchaikin, S.
    Wilson, A. B.
    Rose, G.
    [J]. PHYSICAL REVIEW X, 2014, 4 (02):
  • [25] Lanyon BP, 2017, NAT PHYS, V13, P1158, DOI [10.1038/NPHYS4244, 10.1038/nphys4244]
  • [26] Separability-entanglement classifier via machine learning
    Lu, Sirui
    Huang, Shilin
    Li, Keren
    Li, Jun
    Chen, Jianxin
    Lu, Dawei
    Ji, Zhengfeng
    Shen, Yi
    Zhou, Duanlu
    Zeng, Bei
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [27] Probing entanglement in a many-body-localized system
    Lukin, Alexander
    Rispoli, Matthew
    Schittko, Robert
    Tai, M. Eric
    Kaufman, Adam M.
    Choi, Soonwon
    Khemani, Vedika
    Leonard, Julian
    Greiner, Markus
    [J]. SCIENCE, 2019, 364 (6437) : 256 - +
  • [28] Transforming Bell's inequalities into state classifiers with machine learning
    Ma, Yue-Chi
    Yung, Man-Hong
    [J]. NPJ QUANTUM INFORMATION, 2018, 4
  • [29] Mezzadri F., 2007, Notices of the American Mathematical Society, V54, P592
  • [30] Satzinger K. J., ARXIV210401180QUANTP ARXIV210401180QUANTP