Quantum entanglement recognition

被引:6
作者
Khoo, Jun Yong [1 ,2 ]
Heyl, Markus [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
欧洲研究理事会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; ENTROPY; QUTIP;
D O I
10.1103/PhysRevResearch.3.033135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement constitutes a key characteristic feature of quantum matter. Its detection, however, still faces major challenges. In this paper, we formulate a framework for probing entanglement based on machine learning techniques. The central element is a protocol for the generation of statistical images from quantum many-body states, with which we perform image classification by means of convolutional neural networks. We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error across a wide range of quantum states. We discuss the potential use of our scheme to quantify quantum entanglement in experiments. Our developed scheme provides a generally applicable strategy for quantum entanglement recognition in both equilibrium and nonequilibrium quantum matter.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Measuring Entanglement Entropy of a Generic Many-Body System with a Quantum Switch
    Abanin, Dmitry A.
    Demler, Eugene
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [2] Entanglement in many-body systems
    Amico, Luigi
    Fazio, Rosario
    Osterloh, Andreas
    Vedral, Vlatko
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 517 - 576
  • [3] Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
  • [4] Classifying snapshots of the doped Hubbard model with machine learning
    Bohrdt, Annabelle
    Chiu, Christie S.
    Jig, Geoffrey
    Xu, Muqing
    Greif, Daniel
    Greiner, Markus
    Demler, Eugene
    Grusdt, Fabian
    Knap, Michael
    [J]. NATURE PHYSICS, 2019, 15 (09) : 921 - 924
  • [5] Machine learning quantum phases of matter beyond the fermion sign problem
    Broecker, Peter
    Carrasquilla, Juan
    Melko, Roger G.
    Trebst, Simon
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] Probing Renyi entanglement entropy via randomized measurements
    Brydges, Tiff
    Elben, Andreas
    Jurcevic, Petar
    Vermersch, Benoit
    Maier, Christine
    Lanyon, Ben P.
    Zoller, Peter
    Blatt, Rainer
    Roos, Christian F.
    [J]. SCIENCE, 2019, 364 (6437) : 260 - +
  • [7] Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
  • [8] Machine Learning Phases of Strongly Correlated Fermions
    Ch'ng, Kelvin
    Carrasquilla, Juan
    Melko, Roger G.
    Khatami, Ehsan
    [J]. PHYSICAL REVIEW X, 2017, 7 (03):
  • [9] Quantum convolutional neural networks
    Cong, Iris
    Choi, Soonwon
    Lukin, Mikhail D.
    [J]. NATURE PHYSICS, 2019, 15 (12) : 1273 - +
  • [10] Measuring Entanglement Growth in Quench Dynamics of Bosons in an Optical Lattice
    Daley, A. J.
    Pichler, H.
    Schachenmayer, J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (02)