Quantum entanglement recognition

被引:7
作者
Khoo, Jun Yong [1 ,2 ]
Heyl, Markus [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
欧洲研究理事会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; ENTROPY; QUTIP;
D O I
10.1103/PhysRevResearch.3.033135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement constitutes a key characteristic feature of quantum matter. Its detection, however, still faces major challenges. In this paper, we formulate a framework for probing entanglement based on machine learning techniques. The central element is a protocol for the generation of statistical images from quantum many-body states, with which we perform image classification by means of convolutional neural networks. We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error across a wide range of quantum states. We discuss the potential use of our scheme to quantify quantum entanglement in experiments. Our developed scheme provides a generally applicable strategy for quantum entanglement recognition in both equilibrium and nonequilibrium quantum matter.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Measuring Entanglement Entropy of a Generic Many-Body System with a Quantum Switch [J].
Abanin, Dmitry A. ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2012, 109 (02)
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[4]   Classifying snapshots of the doped Hubbard model with machine learning [J].
Bohrdt, Annabelle ;
Chiu, Christie S. ;
Jig, Geoffrey ;
Xu, Muqing ;
Greif, Daniel ;
Greiner, Markus ;
Demler, Eugene ;
Grusdt, Fabian ;
Knap, Michael .
NATURE PHYSICS, 2019, 15 (09) :921-924
[5]   Machine learning quantum phases of matter beyond the fermion sign problem [J].
Broecker, Peter ;
Carrasquilla, Juan ;
Melko, Roger G. ;
Trebst, Simon .
SCIENTIFIC REPORTS, 2017, 7
[6]   Probing Renyi entanglement entropy via randomized measurements [J].
Brydges, Tiff ;
Elben, Andreas ;
Jurcevic, Petar ;
Vermersch, Benoit ;
Maier, Christine ;
Lanyon, Ben P. ;
Zoller, Peter ;
Blatt, Rainer ;
Roos, Christian F. .
SCIENCE, 2019, 364 (6437) :260-+
[7]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
[8]   Machine Learning Phases of Strongly Correlated Fermions [J].
Ch'ng, Kelvin ;
Carrasquilla, Juan ;
Melko, Roger G. ;
Khatami, Ehsan .
PHYSICAL REVIEW X, 2017, 7 (03)
[9]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[10]   Measuring Entanglement Growth in Quench Dynamics of Bosons in an Optical Lattice [J].
Daley, A. J. ;
Pichler, H. ;
Schachenmayer, J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (02)