State estimation for linear systems with state equality constraints

被引:159
|
作者
Ko, Sangho
Bitmead, Robert R.
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
estimation; constraints; Kalman filters; projection; covariance matrices;
D O I
10.1016/j.automatica.2007.01.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the state estimation problem for linear systems with linear state equality constraints. Using noisy measurements which are available from the observable system, we construct the optimal estimate which also satisfies linear equality constraints. For this purpose, after reviewing modeling problems in linear stochastic systems with state equality constraints, we formulate a projected system representation. By using the constrained Kalman filter for the projected system and comparing its filter Riccati equation with those of the unconstrained and the projected Kalman filters, we clearly show, without using optimality, that the constrained estimator outperforms the other filters for estimating the constrained system state. Finally, a numerical example is presented, which demonstrates performance differences among those filters. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1363 / 1368
页数:6
相关论文
共 50 条
  • [1] Optimal control for linear systems with state equality constraints
    Ko, Sangho
    Bitmead, Robert R.
    AUTOMATICA, 2007, 43 (09) : 1573 - 1582
  • [2] Kalman Filtering With Linear State Equality Constraints: A Method Based on Separating Variables
    Ghanbarpourasl, Habib
    Zobar, Serkan
    IEEE ACCESS, 2022, 10 : 35460 - 35468
  • [3] State estimation for linear and non-linear equality-constrained systems
    Teixeira, Bruno O. S.
    Chandrasekar, Jaganath
    Torres, Leonardo A. B.
    Aguirre, Luis A.
    Bernstein, Dennis S.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (05) : 918 - 936
  • [4] Equality-constrained state estimation for hybrid systems
    Eras-Herrera, Wendy Y.
    Mesquita, Alexandre R.
    Teixeira, Bruno O. S.
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (13) : 2018 - 2028
  • [5] A Robust Null Space Method for Linear Equality Constrained State Estimation
    Hewett, Russell J.
    Heath, Michael T.
    Butala, Mark D.
    Kamalabadi, Farzad
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) : 3961 - 3971
  • [6] Robust State Estimation for Linear Systems Under Distributional Uncertainty
    Wang, Shixiong
    Wu, Zhongming
    Lim, Andrew
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5963 - 5978
  • [7] State Estimation for Linear Systems With Quadratic Outputs
    Berkane, Soulaimane
    Theodosis, Dionysis
    Hamel, Tarek
    Dimarogonas, Dimos V.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3872 - 3877
  • [8] Linear- and Linear-Matrix-Inequality-Constrained State Estimation for Nonlinear Systems
    Aucoin, Robin
    Chee, Stephen Alexander
    Forbes, James Richard
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) : 3153 - 3167
  • [9] Secrecy Codes for State Estimation of General Linear Systems
    Marelli, Damian
    Sui, Tianju
    Fu, Minyue
    Cai, Qianqian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) : 1161 - 1168
  • [10] Stability Analysis of Constrained Distributed Nonlinear and Linear Kalman Filters for Dynamical Systems With State Constraints
    Lyu, Xiaoxu
    Duan, Peihu
    Duan, Zhisheng
    Zhang, Zhao
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) : 632 - 643