Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting

被引:79
作者
Wang, Yin [1 ]
Li, Ruidi [1 ]
Niu, Pengda [1 ]
Zhang, Zhijian [1 ]
Yuan, Tiechui [1 ]
Yuan, Jiwei [2 ]
Li, Kun [1 ]
机构
[1] Cent South Univ, Shenzhen Inst, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Titanium Mat Co LTD, Guizhou R&D Ctr, Zunyi 563004, Guizhou, Peoples R China
基金
国家重点研发计划;
关键词
High-entropy alloys; Hexahydric; Selective laser melting; Microstructure evolution; Metallurgical defects; HIGH-STRENGTH; MECHANICAL-PROPERTIES; HOT CRACKING; BEHAVIOR; STABILITY;
D O I
10.1016/j.intermet.2020.106746
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An equimolar hexahydroxy AlCoCrCuFeNi high-entropy alloy (HEA) was produced by selective laser melting (SLM) gas-atomized powders, with emphasis on investigating its microstructure and properties. SLM printed AlCoCrCuFeNi HEA shows high crack sensitivity with faced centered cubic (FCC) and body-centered cubic (BCC) phases. High-angle grain boundary, segregation of Cu element and the misfit between BCC and FCC phase account for the crack formation during SLM process. The content of FCC phase gradually increases from 30.55% to 40.20% as VED increases from 52.08 J/mm(3) to 83.3 J/mm(3). The formation of BCC is restrained owing to rapid solidification. Moreover, unique fine columnar grains growing along the building direction are perpendicular to the boundary of molten pools and present (001), (111) and (101) grain orientation. Also, the fine grains and the high-density dislocation network induced by rapid cooling of the SLMed AlCoCrCuFeNi HEA are observed. The SLMed AlCoCrCuFeNi HEA possesses outstanding properties with a Vickers hardness of 710.4 Hv compared to its counterpart prepared by traditional methods of 500 Hv.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
[Anonymous], MAT DES
[2]   High-temperature oxidatiOn behavior of laser-aided additively manufactured NiCrAlY coating [J].
Ansari, M. ;
Shoja-Razavi, R. ;
Barekat, M. ;
Man, H. C. .
CORROSION SCIENCE, 2017, 118 :168-177
[3]   The use of high-entropy alloys in additive manufacturing [J].
Brif, Yevgeni ;
Thomas, Meurig ;
Todd, Iain .
SCRIPTA MATERIALIA, 2015, 99 :93-96
[4]  
Ceng W. M. S. M, 2010, Laser Material Processing
[5]   Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J].
Chauvet, Edouard ;
Kontis, Paraskevas ;
Jaegle, Eric A. ;
Gault, Baptiste ;
Raabe, Dierk ;
Tassin, Catherine ;
Blandin, Jean-Jacques ;
Dendievel, Remy ;
Vayre, Benjamin ;
Abed, Stephane ;
Martin, Guilhem .
ACTA MATERIALIA, 2018, 142 :82-94
[6]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[7]   Effect of process parameters on the Selective Laser Melting (SLM) of tungsten [J].
Enneti, Ravi K. ;
Morgan, Rick ;
Atre, Sundar V. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 71 :315-319
[8]   Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J].
Gu, Dongdong ;
Hagedorn, Yves-Christian ;
Meiners, Wilhelm ;
Meng, Guangbin ;
Batista, Rui Joao Santos ;
Wissenbach, Konrad ;
Poprawe, Reinhart .
ACTA MATERIALIA, 2012, 60 (09) :3849-3860
[9]   On the machining of selective laser melting CoCrFeMnNi high-entropy alloy [J].
Guo, Jiang ;
Goh, Minhao ;
Zhu, Zhiguang ;
Lee, Xiaohua ;
Nai, Mui Ling Sharon ;
Wei, Jun .
MATERIALS & DESIGN, 2018, 153 :211-220
[10]   Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms [J].
Guo, Meng ;
Gu, Dongdong ;
Xi, Lixia ;
Du, Lei ;
Zhang, Hongmei ;
Zhang, Jiayao .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 79 :37-46