An efficient and accurate interpolation strategy for multi-dimensional functions
被引:0
作者:
Pan, XC
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL 60637 USAUniv Chicago, Dept Radiol, Chicago, IL 60637 USA
Pan, XC
[1
]
Kao, CM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL 60637 USAUniv Chicago, Dept Radiol, Chicago, IL 60637 USA
Kao, CM
[1
]
Edwards, D
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL 60637 USAUniv Chicago, Dept Radiol, Chicago, IL 60637 USA
Edwards, D
[1
]
机构:
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
来源:
1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3
|
1998年
关键词:
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In this work, we propose an alternative approach for performing multi-dimensional interpolation of bandlimited functions. Exploiting the properties of the sampling patterns of the underlying functions of interest, our approach accomplishes the task of multi-dimensional interpolation by use of the fast Fourier transform (FFT) and lower-dimensional interpolation. The proposed technique is easy to implement and more accurate than the most commonly used multidimensional linear interpolation. When applied to two- and three-dimensional (2D and 3D) problems that arise in medical imaging, the proposed approach is faster and more accurate than are the conventional bilinear and 3D-linear interpolation approaches.