Linear arboricity and linear k-arboricity of regular graphs

被引:32
作者
Alon, N [1 ]
Teague, VJ
Wormald, NC
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
[3] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
关键词
Regular Graph; Probabilistic Argument; Linear Arboricity;
D O I
10.1007/PL00007233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find upper bounds on the linear k-arboricity of d-regular graphs using a probabilistic argument. For small ii these bounds are new. For large k they blend into the known upper bounds on the linear arboricity of regular graphs.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 7 条
[1]  
Akiyama J., 1980, Mathematica Slovaca, V30, P405
[2]  
Aldred R. E. L., 1998, AUSTRALAS J COMBIN, V18, P97
[3]   THE LINEAR ARBORICITY OF GRAPHS [J].
ALON, N .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 62 (03) :311-325
[4]  
ALON N, 1992, PROBABILISTIC METHOD
[5]   ON LINEAR K-ARBORICITY [J].
BERMOND, JC ;
FOUQUET, JL ;
HABIB, M ;
PEROCHE, B .
DISCRETE MATHEMATICS, 1984, 52 (2-3) :123-132
[6]  
BONDY JA, 1988, J LON MATH SOC H, V37, P14
[7]   Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5 [J].
Thomassen, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (01) :100-109