Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals

被引:247
作者
Sharma, Rajeev [1 ]
Pachori, Ram Bilas [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Indian Inst Technol Indore, Discipline Elect Engn, Indore 452017, Madhya Pradesh, India
[2] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
关键词
SUPPORT VECTOR MACHINE; EEG-BASED DIAGNOSIS; WAVELET-CHAOS METHODOLOGY; TEMPORAL-LOBE EPILEPSY; APPROXIMATE ENTROPY; EPILEPTOGENIC FOCUS; FEATURE-EXTRACTION; SAMPLE ENTROPY; SEIZURE; CLASSIFICATION;
D O I
10.3390/e17020669
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The brain is a complex structure made up of interconnected neurons, and its electrical activities can be evaluated using electroencephalogram (EEG) signals. The characteristics of the brain area affected by partial epilepsy can be studied using focal and non-focal EEG signals. In this work, a method for the classification of focal and non-focal EEG signals is presented using entropy measures. These entropy measures can be useful in assessing the nonlinear interrelation and complexity of focal and non-focal EEG signals. These EEG signals are first decomposed using the empirical mode decomposition (EMD) method to extract intrinsic mode functions (IMFs). The entropy features, namely, average Shannon entropy (ShEn(Avg)), average Renyi's entropy (RenEn(Avg)), average approximate entropy (ApEn(Avg)), average sample entropy (SpEn(Avg)) and average phase entropies (S1(Avg) and S2(Avg)), are computed from different IMFs of focal and non-focal EEG signals. These entropies are used as the input feature set for the least squares support vector machine (LS-SVM) classifier to classify into focal and non-focal EEG signals. Experimental results show that our proposed method is able to differentiate the focal and non-focal EEG signals with an average classification accuracy of 87% correct.
引用
收藏
页码:669 / 691
页数:23
相关论文
共 75 条
  • [1] Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy
    Abásolo, D
    Hornero, R
    Espino, P
    Poza, J
    Sánchez, CI
    de la Rosa, R
    [J]. CLINICAL NEUROPHYSIOLOGY, 2005, 116 (08) : 1826 - 1834
  • [2] Linear and nonlinear analysis of normal and CAD-affected heart rate signals
    Acharya, U. Rajendra
    Faust, Oliver
    Sree, Vinitha
    Swapna, G.
    Martis, Roshan Joy
    Kadri, Nahrizul Adib
    Suri, Jasjit S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 113 (01) : 55 - 68
  • [3] Automated identification of normal and diabetes heart rate signals using nonlinear measures
    Acharya, U. Rajendra
    Faust, Oliver
    Kadri, Nahrizul Adib
    Suri, Jasjit S.
    Yu, Wenwei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (10) : 1523 - 1529
  • [4] AUTOMATED DIAGNOSIS OF NORMAL AND ALCOHOLIC EEG SIGNALS
    Acharya, U. Rajendra
    Sree, S. Vinitha
    Chattopadhyay, Subhagata
    Suri, Jasjit S.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (03)
  • [5] Automated diagnosis of epileptic EEG using entropies
    Acharya, U. Rajendra
    Molinari, Filippo
    Sree, S. Vinitha
    Chattopadhyay, Subhagata
    Ng, Kwan-Hoong
    Suri, Jasjit S.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) : 401 - 408
  • [6] Analysis of EEG records in an epileptic patient using wavelet transform
    Adeli, H
    Zhou, Z
    Dadmehr, N
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) : 69 - 87
  • [7] A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease
    Adeli, Hojjat
    Ghosh-Dastidar, Samanwoy
    Dadmehr, Nahid
    [J]. NEUROSCIENCE LETTERS, 2008, 444 (02) : 190 - 194
  • [8] A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    Adeli, Hojjat
    Ghosh-Dastidar, Samanwoy
    Dadmehr, Nahid
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) : 205 - 211
  • [9] Ahmadlou M., 2014, Comprehensive Guide to Autism, P327
  • [10] Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder
    Ahmadlou, Mehran
    Adeli, Hojjat
    Adeli, Amir
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2010, 27 (05) : 328 - 333