Analytic Twists of GL3 x GL2 Automorphic Forms

被引:16
作者
Lin, Yongxiao [1 ]
Sun, Qingfeng [2 ]
机构
[1] EPFL SB Mathgeom Tan, Stn 8, CH-1015 Lausanne, Switzerland
[2] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
基金
瑞士国家科学基金会; 中国国家自然科学基金;
关键词
BOUNDS; SUBCONVEXITY; COEFFICIENTS; SUMMATION;
D O I
10.1093/imrn/rnaa348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a Hecke-Maass cusp form for SL3(Z) with normalized Hecke eigenvalues lambda(pi) (n, r). Let f be a holomorphic or Maass cusp form for SL2( Z) with normalized Hecke eigenvalues lambda(f) (n). In this paper, we are concerned with obtaining nontrivial estimates for the sum Sigma(r,n >= 1) lambda(pi) (n,r)lambda(f) (n) e (t phi(r2n/N)) V (r(2)n/N) where e(x) = e(2pix), V(x) is an element of C-c(infinity) (0,infinity), t >= 1 is a large parameter and phi(x) is some realvalued smooth function. As applications, we give an improved subconvexity bound for GL(3) x GL(2) L-functions in the t-aspect and under the Ramanujan-Petersson conjecture we derive the following bound for sums of GL(3) x GL(2) Fourier coefficients Sigma(r2n <= x) lambda(pi) (r,n) lambda(f)(n) << (pi,f,epsilon) x(5/7-1/364+epsilon) for any epsilon > 0, which breaks for the 1st time the barrier O(x(5/7+epsilon)) in a work by Friedlander-Iwaniec.
引用
收藏
页码:15143 / 15208
页数:66
相关论文
共 50 条
[21]   Non-split sums of coefficients of GL(2)-automorphic forms [J].
Templier, Nicolas ;
Tsimerman, Jacob .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (02) :677-723
[22]   A basis for the space of weakly holomorphic Drinfeld modular forms for GL2(A) [J].
Choi, SoYoung .
JOURNAL OF NUMBER THEORY, 2022, 232 :101-117
[23]   On the subconvexity problem for GL(3) x GL(2) L-functions [J].
Khan, Rizwanur .
FORUM MATHEMATICUM, 2015, 27 (02) :897-913
[24]   SHIFTED CONVOLUTION SUMS FOR GL(3) x GL(2) [J].
Munshi, Ritabrata .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (13) :2345-2362
[25]   First moments of Rankin-Selberg convolutions of automorphic forms on GL(2) [J].
Hoffstein, Jeff ;
Lee, Min ;
Nastasescu, Maria .
RESEARCH IN NUMBER THEORY, 2021, 7 (04)
[26]   A bound for twists of GL3×GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}_3\times GL_2$$\end{document}L-functions with composite modulus [J].
Qingfeng Sun ;
Yanxue Yu .
The Ramanujan Journal, 2024, 64 (1) :185-225
[27]   Simultaneous non-vanishing of GL(3) X GL(2) and GL(2) L-functions [J].
Khan, Rizwanur .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 :535-553
[28]   A BESSEL δ-METHOD AND HYBRID BOUNDS FOR GL2 [J].
Fan, Yilan ;
Sun, Qingfeng .
QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (02) :617-656
[29]   Subconvexity bounds for GL(3) x GL(2) L-functions in GL(2) spectral aspect [J].
Kumar, Sumit .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (02) :543-588
[30]   Subconvexity for L-functions on GL3 over number fields [J].
Qi, Zhi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (03) :1113-1192