Successive phase transitions and phase diagrams for the quasi-two-dimensional easy-axis triangular antiferromagnet Rb4Mn(MoO4)3

被引:64
作者
Ishii, R. [1 ]
Tanaka, S. [1 ]
Onuma, K. [2 ]
Nambu, Y. [3 ,4 ,5 ]
Tokunaga, M. [1 ]
Sakakibara, T. [1 ]
Kawashima, N. [1 ]
Maeno, Y. [2 ]
Broholm, C. [3 ,4 ,5 ]
Gautreaux, D. P. [6 ]
Chan, J. Y. [6 ]
Nakatsuji, S. [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[3] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
SPIN SYSTEM SRCU2(BO3)(2); DIMER GROUND-STATE; HEISENBERG-ANTIFERROMAGNET; LATTICE ANTIFERROMAGNET; NEEL ORDER; MAGNETIZATION; MODEL;
D O I
10.1209/0295-5075/94/17001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using magnetic, thermal and neutron measurements we show that Rb4Mn(MoO4)(3) is a quasi-2D triangular Heisenberg antiferromagnet with easy-axis anisotropy and successive transitions bracketing an intermediate collinear phase. An accurate quantitative account of the phase diagram is achieved through Monte Carlo simulation of a spin Hamiltonian with easy-axis anisotropy D = 0.22J. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 26 条
[1]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[2]   SIGNATURE OF NEEL ORDER IN EXACT SPECTRA OF QUANTUM ANTIFERROMAGNETS ON FINITE LATTICES [J].
BERNU, B ;
LHUILLIER, C ;
PIERRE, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2590-2593
[3]   Spin ice state in frustrated magnetic pyrochlore materials [J].
Bramwell, ST ;
Gingras, MJP .
SCIENCE, 2001, 294 (5546) :1495-1501
[4]   Phase transitions induced by easy-plane anisotropy in the classical Heisenberg antiferromagnet on a triangular lattice: A Monte Carlo simulation [J].
Capriotti, L ;
Vaia, R ;
Cuccoli, A ;
Tognetti, V .
PHYSICAL REVIEW B, 1998, 58 (01) :273-281
[5]   Long-range Neel order in the triangular Heisenberg model [J].
Capriotti, L ;
Trumper, AE ;
Sorella, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (19) :3899-3902
[6]   Magnon decay in noncollinear quantum antiferromagnets [J].
Chernyshev, A. L. ;
Zhitomirsky, M. E. .
PHYSICAL REVIEW LETTERS, 2006, 97 (20)
[7]   Triangular antiferromagnets [J].
Collins, MF ;
Petrenko, OA .
CANADIAN JOURNAL OF PHYSICS, 1997, 75 (09) :605-655
[8]   SIMPLE VARIATIONAL WAVE-FUNCTIONS FOR TWO-DIMENSIONAL HEISENBERG SPIN-1/2 ANTIFERROMAGNETS [J].
HUSE, DA ;
ELSER, V .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2531-2534
[9]   DOUBLE-Q 120-DEGREES STRUCTURE IN THE HEISENBERG-ANTIFERROMAGNET ON RHOMBOHEDRALLY STACKED TRIANGULAR LATTICE LICRO2 [J].
KADOWAKI, H ;
TAKEI, H ;
MOTOYA, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (34) :6869-6884
[10]   EXPERIMENTAL-STUDY OF NEW TYPE PHASE-TRANSITION IN TRIANGULAR LATTICE ANTIFERROMAGNET VCL2 [J].
KADOWAKI, H ;
UBUKOSHI, K ;
HIRAKAWA, K ;
MARTINEZ, JL ;
SHIRANE, G .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (11) :4027-4039