Short coverings in tridimensional spaces arising from sum-free sets

被引:6
作者
Carmelo, E. L. Monte [1 ]
Nakaoka, I. N. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
D O I
10.1016/j.ejc.2006.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime power q, define c(q) as the minimum cardinality of a subset H of the tridimensional space F-q(3) which satisfies the following property: every vector in this space differs in at most I coordinate from a multiple of a vector in H. On the basis of suitable actions of group, there is established a connection between sum-free sets and corresponding coverings. As an application of our method, there is constructed a class of short coverings which yields c(q) <= 3(q + 4)/4, improving the earlier upper bound c(q) <= q + I. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 7 条
[1]  
[Anonymous], 1972, LECT NOTES MATH
[2]  
CARMELO ELM, 2005, IN PRESS INT J APPL
[3]  
Cohen G, 1997, COVERING CODES
[4]  
Kalbfleisch J.G., 1969, J. Lond. Math. Soc., V44, P60
[5]   On the number of maximal sum-free sets [J].
Luczak, T ;
Schoen, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2205-2207
[6]  
Omelyanov K. G., 2003, Discrete Mathematics and Applications, V13, P637, DOI 10.1163/156939203322733345
[7]  
Taussky O., 1948, Ann. Soc. Polon. Math, V21, P303