Coupling of Light into Nanowire Arrays and Subsequent Absorption

被引:79
|
作者
Anttu, N. [1 ]
Xu, H. Q. [1 ]
机构
[1] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
关键词
Light Absorption; Semiconductor; Nanowire; Periodic Array; Photovoltaics; OPTICAL-ABSORPTION; SILICON NANOWIRE; SOLAR-CELLS; EFFICIENCY;
D O I
10.1166/jnn.2010.2907
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a theoretical study of the absorption of light in periodic arrays of InP nanowires. The absorption in the array depends strongly on the diameter and the length of the nanowires, as well as the period of the array. Nanowires of a length of just 2 Am are able, after an appropriate choice for the other parameters, to absorb more than 90% of the incident energy of TE and TM polarized light, with photon energies almost all the way down to the band gap energy and an incidence angle up to 50 degree. This high total absorption arises from a good coupling of the incident light into the nanowire array at the top interface between air and the array and absorption inside the array before the light reaches the interface between the nanowires and the substrate. We find that for a given photon energy there exists a critical nanowire diameter above which a dramatic increase in the absorption occurs. The critical diameter decreases for increasing photon energies, and is directly related to the dispersion of waveguiding modes in single isolated nanowires. A characterization showed that the absorption characteristics of the nanowire arrays are very promising for photovoltaic applications.
引用
收藏
页码:7183 / 7187
页数:5
相关论文
共 50 条
  • [31] Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells
    Li, Yanhong
    Yan, Xin
    Wu, Yao
    Zhang, Xia
    Ren, Xiaomin
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 7
  • [32] Analysis of optical absorption in GaAs nanowire arrays
    Guo, Haomin
    Wen, Long
    Li, Xinhua
    Zhao, Zhifei
    Wang, Yuqi
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 6
  • [33] Reflection measurements to reveal the absorption in nanowire arrays
    Anttu, Nicklas
    Iqbal, Azhar
    Heurlin, Magnus
    Samuelson, Lars
    Borgstrom, Magnus T.
    Pistol, Mats-Erik
    Yartsev, Arkady
    OPTICS LETTERS, 2013, 38 (09) : 1449 - 1451
  • [34] Light absorption and emission in nanowire array solar cells
    Kupec, Jan
    Stoop, Ralph L.
    Witzigmann, Bernd
    OPTICS EXPRESS, 2010, 18 (26): : 27589 - 27605
  • [35] Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting
    Ren, Rui
    Guo, Yong-Xin
    Zhu, Ri-Hong
    OPTICAL ENGINEERING, 2014, 53 (02)
  • [36] Optical absorption enhancement in silicon nanowire and nanohole arrays for photovoltaic applications
    Lin, Chenxi
    Povinelli, Michelle L.
    NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION, 2010, 7772
  • [37] III-V nanowire arrays: growth and light interaction
    Heiss, M.
    Russo-Averchi, E.
    Dalmau-Mallorqui, A.
    Tuetuencueoglu, G.
    Matteini, F.
    Rueffer, D.
    Conesa-Boj, S.
    Demichel, O.
    Alarcon-Llado, E.
    Fontcuberta i Morral, A.
    NANOTECHNOLOGY, 2014, 25 (01)
  • [38] Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells
    Wang, Baomin
    Stevens, Erica
    Leu, Paul W.
    OPTICS EXPRESS, 2014, 22 (05): : A386 - A395
  • [39] Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions
    Bartschmid, Theresa
    Wendisch, Fedja J.
    Farhadi, Amin
    Bourret, Gilles R.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 5307 - 5317
  • [40] Excellent Light Confinement of Hemiellipsoid- and Inverted Hemiellipsoid-Modified Semiconductor Nanowire Arrays
    Chen, Xinyu
    Wang, Jiang
    Shao, Pengfei
    Liu, Qiming
    Liu, Dequan
    Chen, Qiang
    Li, Yali
    Li, Junshuai
    He, Deyan
    NANOSCALE RESEARCH LETTERS, 2018, 13