Invariant Set Distributed Explicit Reference Governors for Provably Safe On-Board Control of Nano-Quadrotor Swarms

被引:9
作者
Convens, Bryan [1 ,2 ]
Merckaert, Kelly [1 ,3 ]
Vanderborght, Bram [1 ,2 ]
Nicotra, Marco M. [4 ]
机构
[1] Vrije Univ Brussel, Dept Mech Engn, Robot & Multibody Mech R&MM, Brussels, Belgium
[2] IMEC, Leuven, Belgium
[3] Flanders Make, Leuven, Belgium
[4] Univ Colorado, Robot Optimizat & Constrained Control ROCC, Dept Elect Comp & Energy Engn, Boulder, CO USA
基金
美国国家科学基金会;
关键词
aerial robotics control; multi-robot systems; actuator saturation; distributed collision avoidance; guaranteed safety; human-swarm interaction; invariant set control; nano-quadrotor swarm; TRAJECTORY GENERATION; MOBILE ROBOTS; FRAMEWORK; TELEOPERATION; ROBUST;
D O I
10.3389/frobt.2021.663809
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article provides a theory for provably safe and computationally efficient distributed constrained control, and describes an application to a swarm of nano-quadrotors with limited on-board hardware and subject to multiple state and input constraints. We provide a formal extension of the explicit reference governor framework to address the case of distributed systems. The efficacy, robustness, and scalability of the proposed theory is demonstrated by an extensive experimental validation campaign and a comparative simulation study on single and multiple nano-quadrotors. The control strategy is implemented in real-time on-board palm-sized unmanned erial vehicles, and achieves safe swarm coordination without relying on any offline trajectory computations.
引用
收藏
页数:23
相关论文
共 55 条
[1]   Collision avoidance for aerial vehicles in multi-agent scenarios [J].
Alonso-Mora, Javier ;
Naegeli, Tobias ;
Siegwart, Roland ;
Beardsley, Paul .
AUTONOMOUS ROBOTS, 2015, 39 (01) :101-121
[2]  
Bajcsy A, 2019, IEEE INT CONF ROBOT, P936, DOI [10.1109/ICRA.2019.8794457, 10.1109/icra.2019.8794457]
[3]  
Bayram H, 2017, 2017 INTERNATIONAL SYMPOSIUM ON MULTI-ROBOT AND MULTI-AGENT SYSTEMS (MRS)
[4]   Swarm robotics: a review from the swarm engineering perspective [J].
Brambilla, Manuele ;
Ferrante, Eliseo ;
Birattari, Mauro ;
Dorigo, Marco .
SWARM INTELLIGENCE, 2013, 7 (01) :1-41
[5]   Towards autonomous navigation of miniature UAV [J].
Brockers, Roland ;
Humenberger, Martin ;
Weiss, Stephan ;
Matthies, Larry .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :645-+
[6]   A Hybrid Method for Online Trajectory Planning of Mobile Robots in Cluttered Environments [J].
Campos-Macias, Leobardo ;
Gomez-Gutierrez, David ;
Aldana-Lopez, Rodrigo ;
de la Guardia, Rafael ;
Parra-Vilchis, Jose I. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02) :935-942
[7]   Robust Coordinated Aerial Deployments for Theatrical Applications Given Online User Interaction via Behavior Composition [J].
Cappo, Ellen A. ;
Desai, Arjav ;
Michael, Nathan .
DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, 2019, 6 :665-678
[8]   Online planning for human-multi-robot interactive theatrical performance [J].
Cappo, Ellen A. ;
Desai, Arjav ;
Collins, Matthew ;
Michael, Nathan .
AUTONOMOUS ROBOTS, 2018, 42 (08) :1771-1786
[9]   Onboard Detection and Localization of Drones Using Depth Maps [J].
Carrio, Adrian ;
Tordesillas, Jesus ;
Vemprala, Sai ;
Saripalli, Srikanth ;
Campoy, Pascual ;
How, Jonathan P. .
IEEE ACCESS, 2020, 8 :30480-30490
[10]  
Chamanbaz M, 2017, FRONT ROBOT AI, V4, DOI 10.3389/frobt.2017.00012