On Sobolev bilinear forms and polynomial solutions of second-order differential equations

被引:3
作者
Garcia-Ardila, J. C. [1 ]
Marriaga, M. E. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada & Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[2] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Mostoles, Spain
关键词
Classical orthogonal polynomials; Sobolev orthogonal polynomials; Nonstandard parameters; ORTHOGONAL POLYNOMIALS;
D O I
10.1007/s13398-021-01137-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a linear second-order differential operator L equivalent to phi D-2 + psi D with non zero polynomial coefficients of degree atmost 2, a sequence of real numbers lambda(n), n >= 0, and a Sobolev bilinear form B(p, q) = Sigma(N)(k=0) < u(k), p((k)) q((k))>, N >= 0, where u(k), 0 <= k <= N, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation L[y] = lambda(n) y with respect to B. We show that such polynomials are orthogonal with respect to B if the Pearson equations D(phi u(k)) = (.psi+ k phi') u(k), 0 <= k <= N, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
引用
收藏
页数:31
相关论文
共 20 条
[11]  
Hahn W., 1935, Math. Zeit., V39, P634
[12]   A NEW CLASS OF ORTHOGONAL POLYNOMIALS - THE BESSEL POLYNOMIALS [J].
KRALL, HL ;
FRINK, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (JAN) :100-115
[13]  
Krall HL, 1966, ANN MAT PUR APPL, V74, P135, DOI DOI 10.1007/BF02416454
[14]  
Krall HL., 1941, Bull Am Math Soc, V47, P261, DOI [10.1090/S0002-9904-1941-07427-6, DOI 10.1090/S0002-9904-1941-07427-6]
[15]  
Kwon K.H., 1995, ANN NUMERICAL MATH, V2, P289
[16]   Sobolev orthogonal polynomials and second-order differential equations [J].
Kwon, KH ;
Littlejohn, LL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) :547-594
[17]   Linear interpolation and Sobolev orthogonality [J].
Moreno, Samuel G. ;
Garcia-Caballero, Esther M. .
JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) :35-48
[18]   On Sobolev orthogonality for the generalized Laguerre polynomials [J].
Perez, TE ;
Pinar, MA .
JOURNAL OF APPROXIMATION THEORY, 1996, 86 (03) :278-285
[19]   ON THE SOBOLEV ORTHOGONALITY OF CLASSICAL ORTHOGONAL POLYNOMIALS FOR NON STANDARD PARAMETERS [J].
Sanchez-Lara, J. F. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) :267-288
[20]  
Szego D., 1975, ORTHOGONAL POLYNOMIA, V4