On Sobolev bilinear forms and polynomial solutions of second-order differential equations

被引:3
作者
Garcia-Ardila, J. C. [1 ]
Marriaga, M. E. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada & Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[2] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Mostoles, Spain
关键词
Classical orthogonal polynomials; Sobolev orthogonal polynomials; Nonstandard parameters; ORTHOGONAL POLYNOMIALS;
D O I
10.1007/s13398-021-01137-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a linear second-order differential operator L equivalent to phi D-2 + psi D with non zero polynomial coefficients of degree atmost 2, a sequence of real numbers lambda(n), n >= 0, and a Sobolev bilinear form B(p, q) = Sigma(N)(k=0) < u(k), p((k)) q((k))>, N >= 0, where u(k), 0 <= k <= N, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation L[y] = lambda(n) y with respect to B. We show that such polynomials are orthogonal with respect to B if the Pearson equations D(phi u(k)) = (.psi+ k phi') u(k), 0 <= k <= N, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
引用
收藏
页数:31
相关论文
共 20 条
[1]   Orthogonality of the Jacobi polynomials with negative integer parameters [J].
Alfaro, M ;
de Morales, MA ;
Rezola, ML .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (02) :379-386
[2]  
Alfaro M., 1999, METHODS APPL ANAL, V6, P593
[3]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[4]   Nonclassical Jacobi Polynomials and Sobolev Orthogonality [J].
Bruder, Andrea ;
Littlejohn, L. L. .
RESULTS IN MATHEMATICS, 2012, 61 (3-4) :283-313
[5]  
Chihara T.S., 2011, An Introduction to Orthogonal Polynomials
[6]   Sobolev orthogonality for the Gegenbauer polynomials {C7(-N+1/2)}n≥0 [J].
de Morales, MA ;
Pérez, TE ;
Piñar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (01) :111-120
[7]   Multiple Geronimus transformations [J].
Derevyagin, M. ;
Garcia-Ardila, J. C. ;
Marcellan, F. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 454 :158-183
[8]  
Garcia-Ardila JC., 2021, Orthogonal polynomials and linear functionals. An algebraic approach and applications, DOI [10.4171/elm/33, DOI 10.4171/ELM/33]
[9]   Hermite interpolation and Sobolev orthogonality [J].
García-Caballero, EM ;
Pérez, TE ;
Piñar, MA .
ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) :87-99
[10]  
GARCIACABALLERO EM, 1999, ELECTRON T NUMER ANA, V9, P56