EVALUATING THE SENTINEL-2A SATELLITE DATA FOR FUEL MOISTURE CONTENT RETRIEVAL

被引:0
作者
Shu, Qidi [1 ]
Quan, Xingwen [1 ]
Yebra, Marta [2 ,3 ]
Liu, Xiangzhuo [1 ]
Wang, Long [1 ]
Zhang, Yang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Australian Natl Univ, Fenner Sch Environm & Soc, GPO Box 4, Canberra, ACT 2601, Australia
[3] Bushfire & Nat Hazards Cooperat Res Ctr, Melbourne, Vic 3002, Australia
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Fuel moisture content (FMC); Sentinel-2A; Multiple radiative transfer models (RTMs); Wildfire; FOREST; MODIS; MODEL;
D O I
10.1109/igarss.2019.8900104
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Fuel moisture content (FMC) of vegetation canopy is a critical variable in affecting wildfire behavior. Methodologies based on multiple sources of remote sensing data have shown a prominent advantage for spatial and temporal FMC mapping. However, there is no study focused on FMC retrieval using the Sentinel-2A satellite data to date. This study is to evaluate the performance of this data for FMC retrieval under the framework of the multiple coupled radiative transfer models. Due to the limited field measurements and discontinuous satellite data, only 15 field measurements from USA, South Africa, Australia and France were available for the validation of the retrieved FMC. Results show that the retrieved FMCs were promising with R-2 = 0.64 and RMSE = 47.16%, which demonstrated the potential usage of the Sentinel-2A data for FMC mapping and further applications for early-warning of wildfire risk.
引用
收藏
页码:9416 / 9419
页数:4
相关论文
共 17 条
  • [1] Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data
    Caccamo, G.
    Chisholm, L. A.
    Bradstock, R. A.
    Puotinen, M. L.
    Pippen, B. G.
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2012, 21 (03) : 257 - 269
  • [2] Chuvieco E, 2004, CAN J FOREST RES, V34, P2284, DOI [10.1139/x04-101, 10.1139/X04-101]
  • [3] Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating
    Chuvieco, E
    Cocero, D
    Riaño, D
    Martin, P
    Martínez-Vega, J
    de la Riva, J
    Pérez, F
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) : 322 - 331
  • [4] Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:: applications in fire danger assessment
    Chuvieco, E
    Riaño, D
    Aguado, I
    Cocero, D
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (11) : 2145 - 2162
  • [5] Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
    Darvishzadeh, Roshanak
    Skidmore, Andrew
    Schlerf, Martin
    Atzberger, Clement
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) : 2592 - 2604
  • [6] The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance
    Huemmrich, KF
    [J]. REMOTE SENSING OF ENVIRONMENT, 2001, 75 (03) : 423 - 431
  • [7] PROSPECT - A MODEL OF LEAF OPTICAL-PROPERTIES SPECTRA
    JACQUEMOUD, S
    BARET, F
    [J]. REMOTE SENSING OF ENVIRONMENT, 1990, 34 (02) : 75 - 91
  • [8] THE SPECTRAL IMAGE-PROCESSING SYSTEM (SIPS) - INTERACTIVE VISUALIZATION AND ANALYSIS OF IMAGING SPECTROMETER DATA
    KRUSE, FA
    LEFKOFF, AB
    BOARDMAN, JW
    HEIDEBRECHT, KB
    SHAPIRO, AT
    BARLOON, PJ
    GOETZ, AFH
    [J]. REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) : 145 - 163
  • [9] Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data
    Nolan, Rachael H.
    de Dios, Victor Resco
    Boer, Matthias M.
    Caccamo, Gabriele
    Goulden, Michael L.
    Bradstock, Ross A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 174 : 100 - 108
  • [10] Retrieval of forest fuel moisture content using a coupled radiative transfer model
    Quan, Xingwen
    He, Binbin
    Yebra, Marta
    Yin, Changming
    Liao, Zhanmang
    Li, Xing
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 95 : 290 - 302