Automatic Localized Nonconformal Mesh Refinement for Surface Integral Equations

被引:16
作者
Vasquez, Jorge A. Tobon [1 ]
Peng, Zhen [2 ]
Lee, Jin-Fa [3 ]
Vecchi, Giuseppe [1 ]
Vipiana, Francesca [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
[2] Univ Illinois, Dept Elect & Comp Engn ECE, Urbana, IL 61801 USA
[3] Ohio State Univ, Dept Elect Engn, Columbus, OH 43210 USA
关键词
Integral equations; Method of moments; Geometry; Manganese; Surface impedance; Antennas; Indexes; Adaptive mesh refinement; discontinuous Galerkin; error estimation; integral equations; method of moments; ELECTROMAGNETIC SCATTERING; ERROR ESTIMATION; ELEMENT METHOD; DISCRETIZATION;
D O I
10.1109/TAP.2019.2944551
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an automatic, solution based, localized meshing refinement for increasing the accuracy of integral-equation solution for multi-scale electromagnetic problems. The procedure starts with a local measure of the boundary condition error, via testing on zero-order basis functions defined on the finest level mesh. Then, the adaptive mesh refinement (h-refinement) is obtained by nonconformal submeshing with Discontinuous Galerkin formulation in order to achieve the desired accuracy. Numerical experiments show the effectiveness of the approach in the cases of cubic geometry and realistic multi-scale structures.
引用
收藏
页码:967 / 975
页数:9
相关论文
共 26 条
[1]   Energy norm based error estimators for adaptive BEM for hypersingular integral equations [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Praetorius, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2015, 95 :15-35
[2]   A Nonconformal Domain Decomposition Scheme for the Analysis of Multiscale Structures [J].
Bautista, Mario A. Echeverri ;
Vipiana, Francesca ;
Francavilla, Matteo Alessandro ;
Vasquez, Jorge A. Tobon ;
Vecchi, Giuseppe .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (08) :3548-3560
[3]   Estimating accuracy of MOM solutions on arbitrary triangulated 3-D geometries based on examination of boundary conditions performance and accurate derivation of scattered fields [J].
Bogdanov, FG ;
Jobava, RG ;
Frei, S .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2004, 18 (07) :879-897
[4]   The implicit, element residual method for a Posteriori error estimation in FE-BII analysis [J].
Botha, MM ;
Davidson, DB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) :255-258
[5]   An explicit A posteriori error indicator for electromagnetic, finite element-boundary integral analysis [J].
Botha, MM ;
Davidson, DB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (11) :3717-3725
[6]   A Nonconformal Surface Integral Equation for Electromagnetic Scattering by Multiscale Conducting Objects [J].
Chen, Yongpin ;
Li, Dongwei ;
Hu, Jun ;
Lee, Jin-Fa .
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2018, 3 :225-234
[7]   A Reverse Operation Self-Consistent Evaluation Approach for Singular Integrals in the SIE Analysis of PEC Targets [J].
Chen, Yongpin ;
Tian, Xuezhe ;
Peng, Shao-Xin ;
Lim, Kheng-Hwee ;
Lee, Jin-Fa .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (04) :1914-1924
[8]   A Posteriori Error Analysis for a Boundary Element Method with Nonconforming Domain Decomposition [J].
Dominguez, Catalina ;
Heuer, Norbert .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (03) :947-963
[9]   Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D [J].
Erath, C. ;
Funken, S. ;
Goldenits, P. ;
Praetorius, D. .
APPLICABLE ANALYSIS, 2013, 92 (06) :1194-1216
[10]   An hp-adaptive refinement strategy for hypersingular operators on surfaces [J].
Heuer, N .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (03) :396-419