Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems

被引:43
作者
Resmerita, Elena
Anderssen, Robert S.
机构
[1] Austrian Acad Sci, RICAM, A-4040 Linz, Austria
[2] CSIRO Math & Informat Sci, Canberra, ACT 2601, Australia
关键词
ill-posed problems; regularization; Kullback-Leibler distance; information; Radon-Nikodym theorem; Banach space adjoint operator;
D O I
10.1002/mma.855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the approximate solution of ill-posed inverse problems, the formulation of a regularization functional involves two separate decisions: the choice of the residual minimizer and the choice of the regularizor. In this paper, the Kullback-Leibler functional is used for both. The resulting regularization method can solve problems for which the operator and the observational data are positive along with the solution, as occur in many inverse problem applications. Here, existence, uniqueness, convergence and stability for the regularization approximations are established under quite natural regularity conditions. Convergence rates are obtained by using an a priori strategy. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1527 / 1544
页数:18
相关论文
共 47 条
  • [1] ALI SM, 1966, J ROY STAT SOC B, V28, P131
  • [2] MAXIMUM-ENTROPY REGULARIZATION OF FREDHOLM INTEGRAL-EQUATIONS OF THE 1ST KIND
    AMATO, U
    HUGHES, W
    [J]. INVERSE PROBLEMS, 1991, 7 (06) : 793 - 808
  • [3] STATISTICAL METHODOLOGY FOR INVERSE PROBLEMS
    ANDERSSEN, RS
    LATHAM, GA
    WESTCOTT, M
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (10-12) : 1 - 5
  • [4] [Anonymous], 1922, Philosophical Transactions of the Royal Society of London A, DOI [10.1098/rsta.1922.0009, DOI 10.1098/RSTA.1922.0009]
  • [5] Bernado J. M., 1994, BAYESIAN THEORY
  • [6] Besnerais G.L., 1999, IEEE T INFORM THEORY, V45, P1566
  • [7] CONVERGENCE OF BEST ENTROPY ESTIMATES
    Borwein, J. M.
    Lewis, A. S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) : 191 - 205
  • [8] Stability and generalization
    Bousquet, O
    Elisseeff, A
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (03) : 499 - 526
  • [9] Bernstein polynomials and learning theory
    Braess, D
    Sauer, T
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 128 (02) : 187 - 206
  • [10] Braess D, 2002, LECT NOTES ARTIF INT, V2533, P380