Mossy fiber sprouting as a potential therapeutic target for epilepsy

被引:70
作者
Koyama, R [1 ]
Ikegaya, Y [1 ]
机构
[1] Univ Tokyo, Grad Sch Pharmaceut Sci, Chem Pharmacol Lab, Bunkyo Ku, Tokyo 1130033, Japan
关键词
temporal lobe epilepsy; hippocampus; granule cell; axon guidance; mossy fiber sprouting; fasciculation;
D O I
10.2174/1567202043480242
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate hilus and abnormally innervate the dentate inner molecular layer, a phenomenon that is termed mossy fiber sprouting. Experimental studies have replicated this sprouting in animal models of temporal lobe epilepsy, including kindling and pharmacological treatment with convulsants. Because these axon collaterals form recurrent excitatory inputs into dendrites of granule cells, the circuit reorganization is assumed to cause epileptiform activity in the hippocampus, whereas some recent studies indicate that the sprouting is not necessarily associated with early-life seizures. Here we review the mechanisms of mossy fiber sprouting and consider its potential contribution to epileptogenesis. Based on recent findings, we propose that the sprouting can be regarded as a result of disruption of the molecular mechanisms underlying the axon guidance. We finally focus on the possibility that prevention of the abnormal sprouting might be a new strategy for medical treatment with temporal lobe epilepsy.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 104 条
[1]  
Acsády L, 1998, J NEUROSCI, V18, P3386
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[3]   SYNAPTIC REORGANIZATION BY MOSSY FIBERS IN HUMAN EPILEPTIC FASCIA-DENTATA [J].
BABB, TL ;
KUPFER, WR ;
PRETORIUS, JK ;
CRANDALL, PH ;
LEVESQUE, MF .
NEUROSCIENCE, 1991, 42 (02) :351-363
[4]   Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures [J].
Bender, RA ;
Dubé, C ;
Gonzalez-Vega, R ;
Mina, EW ;
Baram, TZ .
HIPPOCAMPUS, 2003, 13 (03) :399-412
[5]   BDNF and epilepsy: too much of a good thing? [J].
Binder, DK ;
Croll, SD ;
Gall, CM ;
Scharfman, HE .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :47-53
[6]  
Buckmaster PS, 2002, J NEUROSCI, V22, P6650
[7]  
BUCKMASTER PS, 1997, J COMP NEUROL, V385, P85
[8]   Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model [J].
Buhl, EH ;
Otis, TS ;
Mody, I .
SCIENCE, 1996, 271 (5247) :369-373
[9]   PROGRESSIVE NEURONAL LOSS INDUCED BY KINDLING - A POSSIBLE MECHANISM FOR MOSSY FIBER SYNAPTIC REORGANIZATION AND HIPPOCAMPAL SCLEROSIS [J].
CAVAZOS, JE ;
SUTULA, TP .
BRAIN RESEARCH, 1990, 527 (01) :1-6
[10]   Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats [J].
Cavazos, JE ;
Zhang, PS ;
Qazi, R ;
Sutula, TP .
JOURNAL OF COMPARATIVE NEUROLOGY, 2003, 458 (03) :272-292