A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:27
|
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Parkinson's Disease Diagnosis: Towards Grammar-based Explainable Artificial Intelligence
    Cavaliere, F.
    Della Cioppa, A.
    Marcelli, A.
    Parziale, A.
    Senatore, R.
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 830 - 835
  • [42] Designing a feature selection method based on explainable artificial intelligence
    Zacharias, Jan
    von Zahn, Moritz
    Chen, Johannes
    Hinz, Oliver
    ELECTRONIC MARKETS, 2022, 32 (04) : 2159 - 2184
  • [43] Explainable Artificial Intelligence for Drug Discovery and Development: A Comprehensive Survey
    Alizadehsani, Roohallah
    Oyelere, Solomon Sunday
    Hussain, Sadiq
    Jagatheesaperumal, Senthil Kumar
    Calixto, Rene Ripardo
    Rahouti, Mohamed
    Roshanzamir, Mohamad
    De Albuquerque, Victor Hugo C.
    IEEE ACCESS, 2024, 12 : 35796 - 35812
  • [44] Explainable Artificial Intelligence Reveals Novel Insight into Tumor Microenvironment Conditions Linked with Better Prognosis in Patients with Breast Cancer
    Chakraborty, Debaditya
    Ivan, Cristina
    Amero, Paola
    Khan, Maliha
    Rodriguez-Aguayo, Cristian
    Basagaoglu, Hakan
    Lopez-Berestein, Gabriel
    CANCERS, 2021, 13 (14)
  • [45] Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression
    Ramirez-Mena, Alberto
    Andres-Leon, Eduardo
    Alvarez-Cubero, Maria Jesus
    Anguita-Ruiz, Augusto
    Martinez-Gonzalez, Luis Javier
    Alcala-Fdez, Jesus
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [46] Explainable artificial intelligence for microbiome data analysis in colorectal cancer biomarker identification
    Novielli, Pierfrancesco
    Romano, Donato
    Magarelli, Michele
    Di Bitonto, Pierpaolo
    Diacono, Domenico
    Chiatante, Annalisa
    Lopalco, Giuseppe
    Sabella, Daniele
    Venerito, Vincenzo
    Filannino, Pasquale
    Bellotti, Roberto
    De Angelis, Maria
    Iannone, Florenzo
    Tangaro, Sabina
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [47] Artificial Intelligence for Breast Cancer Risk Assessment
    Lowry, Kathryn P.
    Zuiderveld, Case C.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (04) : 619 - 625
  • [48] Artificial Intelligence in Breast Cancer Screening and Diagnosis
    Dileep, Gayathri
    Gyani, Sanjeev G. Gianchandani
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (10)
  • [49] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Paez, Andres
    MINDS AND MACHINES, 2019, 29 (03) : 441 - 459
  • [50] A Survey of Explainable Artificial Intelligence for Smart Cities
    Javed, Abdul Rehman
    Ahmed, Waqas
    Pandya, Sharnil
    Maddikunta, Praveen Kumar Reddy
    Alazab, Mamoun
    Gadekallu, Thippa Reddy
    ELECTRONICS, 2023, 12 (04)