A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:27
|
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    ADVANCED MATERIALS, 2024, 36 (25)
  • [32] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [33] Explainable artificial intelligence for medical imaging: Review and experiments with infrared breast images
    Raghavan, Kaushik
    Balasubramanian, Sivaselvan
    Veezhinathan, Kamakoti
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (03)
  • [34] Explainable artificial intelligence for digital forensics
    Hall, Stuart W.
    Sakzad, Amin
    Choo, Kim-Kwang Raymond
    WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2022, 4 (02):
  • [35] Explainable Artificial Intelligence for Simulation Models
    Grigoryan, Gayane
    PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 59 - 60
  • [36] Explainable Artificial Intelligence in CyberSecurity: A Survey
    Capuano, Nicola
    Fenza, Giuseppe
    Loia, Vincenzo
    Stanzione, Claudio
    IEEE ACCESS, 2022, 10 : 93575 - 93600
  • [37] A survey of explainable artificial intelligence decision
    Kong X.
    Tang X.
    Wang Z.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2021, 41 (02): : 524 - 536
  • [38] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [39] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [40] Towards Model-Driven Explainable Artificial Intelligence: Function Identification with Grammatical Evolution
    Sepiolo, Dominik
    Ligeza, Antoni
    APPLIED SCIENCES-BASEL, 2024, 14 (13):