A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:27
|
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
    Massafra, Raffaella
    Fanizzi, Annarita
    Amoroso, Nicola
    Bove, Samantha
    Comes, Maria Colomba
    Pomarico, Domenico
    Didonna, Vittorio
    Diotaiuti, Sergio
    Galati, Luisa
    Giotta, Francesco
    La Forgia, Daniele
    Latorre, Agnese
    Lombardi, Angela
    Nardone, Annalisa
    Pastena, Maria Irene
    Ressa, Cosmo Maurizio
    Rinaldi, Lucia
    Tamborra, Pasquale
    Zito, Alfredo
    Paradiso, Angelo Virgilio
    Bellotti, Roberto
    Lorusso, Vito
    FRONTIERS IN MEDICINE, 2023, 10
  • [12] Towards Semantic Integration for Explainable Artificial Intelligence in the Biomedical Domain
    Pesquita, Catia
    HEALTHINF: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL. 5: HEALTHINF, 2021, : 747 - 753
  • [13] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [14] Towards Breast Cancer Response Prediction using Artificial Intelligence and Radiomics
    Amkrane, Yassine
    El Adoui, Mohammed
    Benjelloun, Mohammed
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 253 - 257
  • [15] Is human-like decision making explainable? Towards an explainable artificial intelligence for autonomous vehicles
    Xie, Jiming
    Zhang, Yan
    Qin, Yaqin
    Wang, Bijun
    Dong, Shuai
    Li, Ke
    Xia, Yulan
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2025, 29
  • [16] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [17] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [18] Explainable Artificial Intelligence (XAI) Model for Cancer Image Classification
    Singhal, Amit
    Agrawal, Krishna Kant
    Quezada, Angeles
    Aguinaga, Adrian Rodriguez
    Jimenez, Samantha
    Yadav, Satya Prakash
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 401 - 441
  • [19] Comparison of Explainable Artificial Intelligence Model and Radiologist Review Performances to Detect Breast Cancer in 752 Patients
    Oztekin, Pelin Seher
    Katar, Oguzhan
    Omma, Tulay
    Erel, Serap
    Tokur, Oguzhan
    Avci, Derya
    Aydogan, Murat
    Yildirim, Ozal
    Avci, Engin
    Acharya, U. Rajendra
    JOURNAL OF ULTRASOUND IN MEDICINE, 2024, 43 (11) : 2051 - 2068
  • [20] Explainable Artificial Intelligence to Detect Breast Cancer: A Qualitative Case-Based Visual Interpretability Approach
    Rodriguez-Sampaio, M.
    Rincon, M.
    Valladares-Rodriguez, S.
    Bachiller-Mayoral, M.
    ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 557 - 566