A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:28
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 31 条
[1]   PSI Clustering for the Assessment of Underground Infrastructure Deterioration [J].
Amoroso, Nicola ;
Cilli, Roberto ;
Bellantuono, Loredana ;
Massimi, Vincenzo ;
Monaco, Alfonso ;
Nitti, Davide Oscar ;
Nutricato, Raffaele ;
Samarelli, Sergio ;
Taggio, Niccolo ;
Tangaro, Sabina ;
Tateo, Andrea ;
Guerriero, Luciano ;
Bellotti, Roberto .
REMOTE SENSING, 2020, 12 (22) :1-16
[2]  
[Anonymous], 2017, Explainable Artificial Intelligence
[3]   Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy [J].
Arabi, Hossein ;
Zaidi, Habib .
EUROPEAN JOURNAL OF HYBRID IMAGING, 2020, 4 (01)
[4]   Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy [J].
Avanzo, Michele ;
Porzio, Massimiliano ;
Lorenzon, Leda ;
Milan, Lisa ;
Sghedoni, Roberto ;
Russo, Giorgio ;
Massafra, Raffaella ;
Fanizzi, Annarita ;
Barucci, Andrea ;
Ardu, Veronica ;
Branchini, Marco ;
Giannelli, Marco ;
Gallio, Elena ;
Cilla, Savino ;
Tangaro, Sabina ;
Lombardi, Angela ;
Pirrone, Giovanni ;
De Martin, Elena ;
Giuliano, Alessia ;
Belmonte, Gina ;
Russo, Serenella ;
Rampado, Osvaldo ;
Mettivier, Giovanni .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :221-241
[5]   Artificial Intelligence and the Medical Physicist: Welcome to the Machine [J].
Avanzo, Michele ;
Trianni, Annalisa ;
Botta, Francesca ;
Talamonti, Cinzia ;
Stasi, Michele ;
Iori, Mauro .
APPLIED SCIENCES-BASEL, 2021, 11 (04) :1-17
[6]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[7]   Developing Prognostic Systems of Cancer Patients by Ensemble Clustering [J].
Chen, Dechang ;
Xing, Kai ;
Henson, Donald ;
Sheng, Li ;
Schwartz, Arnold M. ;
Cheng, Xiuzhen .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2009,
[8]   Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015 [J].
Coates, A. S. ;
Winer, E. P. ;
Goldhirsch, A. ;
Gelber, R. D. ;
Gnant, M. ;
Piccart-Gebhart, M. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2015, 26 (08) :1533-1546
[9]   Adaptive dimension reduction for clustering high dimensional data [J].
Ding, C ;
He, XF ;
Zha, HY ;
Simon, HD .
2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, :147-154
[10]  
Dosilovic F.K., 2018, P 2018 41 INT CONV I