Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?

被引:1323
作者
Bernard, Olivier [1 ]
Lalande, Alain [2 ,3 ]
Zotti, Clement [4 ]
Cervenansky, Frederick [1 ]
Yang, Xin [5 ]
Heng, Pheng-Ann [5 ]
Cetin, Irem [6 ]
Lekadir, Karim [6 ]
Camara, Oscar [6 ]
Gonzalez Ballester, Miguel Angel [6 ,7 ]
Sanroma, Gerard [6 ]
Napel, Sandy [8 ]
Petersen, Steffen [9 ]
Tziritas, Georgios [10 ]
Grinias, Elias [10 ]
Khened, Mahendra [11 ]
Kollerathu, Varghese Alex [11 ]
Krishnamurthi, Ganapathy [11 ]
Rohe, Marc-Michel [12 ]
Pennec, Xavier [12 ]
Sermesant, Maxime [12 ]
Isensee, Fabian [13 ]
Jaeger, Paul [13 ]
Maier-Hein, Klaus H. [13 ]
Full, Peter M. [14 ,15 ]
Wolf, Ivo [14 ]
Engelhardt, Sandy [14 ]
Baumgartner, Christian F. [16 ]
Koch, Lisa M. [17 ]
Wolterink, Jelmer M. [18 ]
Isgum, Ivana [18 ]
Jang, Yeonggul [19 ]
Hong, Yoonmi [19 ]
Patravali, Jay [20 ]
Jain, Shubham [20 ]
Humbert, Olivier [21 ,22 ]
Jodoin, Pierre-Marc [4 ]
机构
[1] Univ Lyon 1, Univ Lyon,CREATIS,CNRS, Inserm,INSA Lyon, UMR5220,U1044, F-69622 Lyon, France
[2] Univ Burgundy, CNRS, FRE 2005, Lab Le2i, F-21078 Dijon, France
[3] Univ Hosp Dijon, MRI Dept, F-21000 Dijon, France
[4] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
[5] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[6] Univ Pompeu Fabra, Barcelona Ctr New Med Technol, Barcelona 08002, Spain
[7] ICREA, Barcelona 08010, Spain
[8] Stanford Univ, Sch Med, Dept Radiol, Stanford, CA 94305 USA
[9] Queen Mary Univ London, William Harvey Res Inst, London E1 4NS, England
[10] Univ Crete, Dept Comp Sci, Iraklion 70013, Greece
[11] IIT Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
[12] Inria Asclepios Project, F-06902 Sophia Antipolis, France
[13] German Canc Res Ctr, Div Med Image Comp, D-69120 Heidelberg, Germany
[14] Mannheim Univ Appl Sci, Dept Comp Sci, D-68163 Mannheim, Germany
[15] Heidelberg Univ Hosp, Dept Cardiac Surg, D-69120 Heidelberg, Germany
[16] Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
[17] Swiss Fed Inst Technol, Comp Vis & Geometry Grp, CH-8092 Zurich, Switzerland
[18] Univ Med Ctr Utrecht, Image Sci Inst, NL-3584 CX Utrecht, Netherlands
[19] Yonsei Univ, Coll Med, Integrat Cardiovasc Imaging Res Ctr, Seoul 03722, South Korea
[20] Qure Ai Co, Mumbai 400063, Maharashtra, India
[21] Univ Nice, TIRO UMR Lab E 4320, F-06100 Nice, France
[22] Ctr Antoine Lacassagne, Dept Nucl Med, F-06189 Nice, France
关键词
Cardiac segmentation and diagnosis; deep learning; MRI; left and right ventricles; myocardium; LEFT-VENTRICLE; TASK-FORCE; RECOVERY; MODEL;
D O I
10.1109/TMI.2018.2837502
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
引用
收藏
页码:2514 / 2525
页数:12
相关论文
共 58 条
[1]  
[Anonymous], 2016, MICCAI
[2]  
[Anonymous], 2017, INT WORKSHOP STAT AT
[3]  
[Anonymous], 2015, 2015 KAGGLE 2 ANN DA
[4]  
[Anonymous], 2017, INT WORKSH STAT ATL
[5]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[6]   Multi-atlas segmentation with augmented features for cardiac MR images [J].
Bai, Wenjia ;
Shi, Wenzhe ;
Ledig, Christian ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :98-109
[7]  
Bai Wenjia., 2017, Human-level CMR image analysis with deep fully convolutional networks
[8]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[9]   Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure [J].
Ben Ayed, Ismail ;
Chen, Hua-mei ;
Punithakumar, Kumaradevan ;
Ross, Ian ;
Li, Shuo .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :87-100
[10]  
Bin Kong, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9902, P264, DOI 10.1007/978-3-319-46726-9_31