Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:24
|
作者
Fan XingYa [1 ]
He JianXun [1 ]
Li BaoDe [2 ]
Yang DaChun [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Beijing Normal Univ, Minist Educ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator; LITTLEWOOD-PALEY CHARACTERIZATIONS; ATOMIC DECOMPOSITION; HP SPACES; BILINEAR DECOMPOSITIONS; SINGULAR-INTEGRALS; ZYGMUND OPERATORS; BOUNDEDNESS; BMO; DUALITY; VERSION;
D O I
10.1007/s11425-016-9024-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a pair of expansive dilations and phi: a"e (n) xa"e (m) x[0, a) -> [0, a) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space via the anisotropic Lusin-area function and establish its atomic characterization, the -function characterization, the -function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet (), if T is a sublinear operator and maps all ()-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from to L (phi) (R (n) x R (m) ) and from to itself, whose kernels are adapted to the action of . The results of this article essentially extend the existing results for weighted product Hardy spaces on a"e (n) x a"e (m) and are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:62
相关论文
共 50 条
  • [1] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    XingYa Fan
    JianXun He
    BaoDe Li
    DaChun Yang
    Science China Mathematics, 2017, 60 : 2093 - 2154
  • [2] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    FAN XingYa
    HE JianXun
    LI BaoDe
    YANG DaChun
    Science China(Mathematics), 2017, 60 (11) : 2093 - 2154
  • [3] New real-variable characterizations of Musielak-Orlicz Hardy spaces
    Liang, Yiyu
    Huang, Jizheng
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 413 - 428
  • [4] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410
  • [5] NEW REAL-VARIABLE CHARACTERIZATIONS OF ANISOTROPIC WEAK HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Qi, Chunyan
    Zhang, Hui
    Li, Baode
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) : 607 - 637
  • [6] Real-Variable Theory of Musielak-Orlicz Hardy Spaces Preface
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : V - +
  • [7] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [8] WAVELET CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES
    Fu, Xing
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 1017 - 1046
  • [9] New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1341 - 1366
  • [10] Summability in Anisotropic Musielak-Orlicz Hardy Spaces
    Ruan, Jiashuai
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 991 - 1006