Effect of stress regulation on electronic structure and optical properties of TiOCl2 monolayer

被引:5
作者
Rui, Song [1 ]
Wang Bi-Li [1 ]
Kai, Feng [1 ]
Jia, Yao [1 ]
Xia, Li [1 ]
机构
[1] Army Engn Univ, People Liberat Army, Dept Gen Educ, Nanjing 211101, Peoples R China
关键词
TiOCl2 monolayer  first-principles  electronic structure  optical properties; BLACK PHOSPHORUS; TRANSISTORS; MOBILITY;
D O I
10.7498/aps.71.20212023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on first-principles calculations, the electronic structure, the transport and optical properties ofTiOCl2 monolayer are systematically investigated. The vibrational, thermodynamic, and mechanical properties of TiOCl2 monolayer are studied by phonon spectrum, molecular dynamics and elastic constants calculations. All these results indicate that the TiOCl2 monolayer possesses good structural stability at room temperature and excellent mechanical properties. The electronic structure analysis shows that the TiOCl2 is an indirect bandgap (1.92 eV) semiconductor. Its band structure can be significantly affected by in-plane stress. Specifically, theTiOCl2 monolayer undergoes an indirect-to-direct band gap transition under -4% uniaxial stress along the a-axis and the gap size decreases to 1.66 eV. Moreover, the TiOCl2 monolayer exhibits obvious anisotropy characteristics, and its electron mobility is 803 cm2middotV-1middots-1 along the b-axis, whereas the hole mobility reaches2537 cm2middotV-1middots-1 along the a-axis. The wave peaks (valleys) of the absorptivity, reflectivity and transmittance shift toward the violet part of the visible band by the stress. All these appealing properties make the TiOCl2monolayer a promising candidate for applications in optoelectronic devices.
引用
收藏
页数:9
相关论文
共 40 条
  • [1] Ferroic orders in two-dimensional transition/rare-earth metal halides
    An, Ming
    Dong, Shuai
    [J]. APL MATERIALS, 2020, 8 (11):
  • [2] Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
  • [3] DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS
    BARDEEN, J
    SHOCKLEY, W
    [J]. PHYSICAL REVIEW, 1950, 80 (01): : 72 - 80
  • [4] Recent Advances in Two-Dimensional Materials beyond Graphene
    Bhimanapati, Ganesh R.
    Lin, Zhong
    Meunier, Vincent
    Jung, Yeonwoong
    Cha, Judy
    Das, Saptarshi
    Xiao, Di
    Son, Youngwoo
    Strano, Michael S.
    Cooper, Valentino R.
    Liang, Liangbo
    Louie, Steven G.
    Ringe, Emilie
    Zhou, Wu
    Kim, Steve S.
    Naik, Rajesh R.
    Sumpter, Bobby G.
    Terrones, Humberto
    Xia, Fengnian
    Wang, Yeliang
    Zhu, Jun
    Akinwande, Deji
    Alem, Nasim
    Schuller, Jon A.
    Schaak, Raymond E.
    Terrones, Mauricio
    Robinson, Joshua A.
    [J]. ACS NANO, 2015, 9 (12) : 11509 - 11539
  • [5] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [6] Elastic properties of hydrogenated graphene
    Cadelano, Emiliano
    Palla, Pier Luca
    Giordano, Stefano
    Colombo, Luciano
    [J]. PHYSICAL REVIEW B, 2010, 82 (23)
  • [7] Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons
    Cai, Yongqing
    Zhang, Gang
    Zhang, Yong-Wei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) : 6269 - 6275
  • [8] Ferroelectricity, Antiferroelectricity, and Ultrathin 2D Electron/Hole Gas in Multifunctional Monolayer MXene
    Chandrasekaran, Anand
    Mishra, Avanish
    Singh, Abhishek Kumar
    [J]. NANO LETTERS, 2017, 17 (05) : 3290 - 3296
  • [9] Fuhrer MS, 2013, NAT NANOTECHNOL, V8, P146, DOI 10.1038/nnano.2013.30
  • [10] 2D Nanomaterial Arrays for Electronics and Optoelectronics
    Gong, Chuanhui
    Hu, Kai
    Wang, Xuepeng
    Wangyang, Peihua
    Yan, Chaoyi
    Chu, Junwei
    Liao, Min
    Dai, Liping
    Zhai, Tianyou
    Wang, Chao
    Li, Liang
    Xiong, Jie
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (16)