Best constants in Sobolev trace inequalities

被引:24
作者
Biezuner, RJ [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat ICEx, BR-30123970 Belo Horizonte, MG, Brazil
关键词
manifolds with boundary; Sobolev trace inequalities; best constants; p-Laplacian;
D O I
10.1016/S0362-546X(03)00114-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the best constant for a Sobolev trace inequality on compact Riemannian manifolds with boundary. More specifically, let I < p < n and [GRAPHICS] where (p) over bar* = p(n - I)1(n - p). We prove that for any compact n-dimensional Riemannian manifold with boundary (M, g), for any epsilon > 0 there exists A(epsilon) > 0 such that \\u\\(P)(L (p) over bar*)(partial derivativeM) less than or equal to ((K) over bar (n,p) + epsilon) \\del(g)u\\(p)(Lp(M)) + Aepsilon\\u\\(p)(Lp(partial derivativeM)) for all u is an element of H-1,H-p (M). (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:575 / 589
页数:15
相关论文
共 14 条
[1]  
[Anonymous], CLASSICAL NEW INEQUA
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]  
CHERRIER P, 1984, B SCI MATH, V108, P225
[7]   SHARP CONSTANT IN A SOBOLEV TRACE INEQUALITY [J].
ESCOBAR, JF .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (03) :687-698
[8]  
EVANS LC, 1990, REGIONAL CBMS REGION, V74
[9]  
HEBEY E, 1999, COURANT LECT NOTES, V5
[10]  
Li YY, 1997, COMMUN PUR APPL MATH, V50, P449, DOI 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.3.CO