The index of impulsive periodic orbits

被引:3
作者
Ding, Boyang [1 ]
Pan, Shiyao [2 ]
Ding, Changming [2 ]
机构
[1] Tilburg Univ, Dept Econ, NL-5037 AB Tilburg, Netherlands
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Impulsive system; Periodic orbit; Index; Zhukovskii quasi-stability; LIMIT-SETS; SYSTEMS;
D O I
10.1016/j.na.2019.111659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the index of an impulsive periodic orbit, which can be used to judge the Zhukovskii quasi-stabilities of periodic orbits. Also, we present an example of predator-prey model to illustrate our results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Periodic and Quasi-Periodic Orbits¶for the Standard Map
    Alberto Berretti
    Guido Gentile
    [J]. Communications in Mathematical Physics, 2002, 231 : 135 - 156
  • [22] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [23] Periodic orbits for perturbed non-autonomous differential equations
    Coll, B.
    Gasull, A.
    Prohens, R.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 803 - 819
  • [24] Periodic orbits of diffusionless Lorenz system
    Dong Cheng-Wei
    [J]. ACTA PHYSICA SINICA, 2018, 67 (24)
  • [25] Stochastic Perturbations of Periodic Orbits with Sliding
    Simpson, D. J. W.
    Kuske, R.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (04) : 967 - 1014
  • [26] Periodic orbits for a class of galactic potentials
    Felipe Alfaro
    Jaume Llibre
    Ernesto Pérez-Chavela
    [J]. Astrophysics and Space Science, 2013, 344 : 39 - 44
  • [27] SYMMETRIC PERIODIC REEB ORBITS ON THE SPHERE
    Abreu, Miguel
    Liu, Hui
    Macarini, Leonardo
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (09) : 6751 - 6770
  • [28] PERIODIC ORBITS WITH PRESCRIBED ABBREVIATED ACTION
    Paternain, Miguel
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4001 - 4008
  • [29] CONTRACTIBLE PERIODIC ORBITS OF LAGRANGIAN SYSTEMS
    Paternain, Miguel
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 445 - 453
  • [30] Computing periodic orbits with arbitrary precision
    Abad, Alberto
    Barrio, Roberto
    Dena, Angeles
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):