Minimax programming as a tool for studying robust multi-objective optimization problems

被引:11
作者
Hong, Zhe [1 ,2 ]
Bae, Kwan Deok [2 ]
Kim, Do Sang [2 ]
机构
[1] Yanbian Univ, Dept Math, Coll Sci, Yanji 133002, Peoples R China
[2] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
Multi-objective optimization; Minimax programming; Generalized convexity; KKT optimality conditions; Duality; SET-INCLUSIVE CONSTRAINTS; OPTIMALITY CONDITIONS; DUALITY; MINMAX;
D O I
10.1007/s10479-021-04179-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper aims to investigate optimality conditions for a weakly Pareto solution to a robust multi-objective optimization problem with locally Lipschitzian data. We do this by using a minimax programming approach, namely, by establishing the necessary optimality condition for a (local) optimal solution to a robust minimax optimization problem under a suitable constraint qualification, we then employ it to arrive in the desired target. In addition, some duality results for both robust minimax optimization problems and robust multi-objective optimization problems are also provided.
引用
收藏
页码:1589 / 1606
页数:18
相关论文
共 31 条
[1]   Duality in robust optimization: Primal worst equals dual best [J].
Beck, Amir ;
Ben-Tal, Aharon .
OPERATIONS RESEARCH LETTERS, 2009, 37 (01) :1-6
[2]   DUALITY FOR A CLASS OF MINMAX AND INEXACT PROGRAMMING PROBLEM [J].
BECTOR, CR ;
CHANDRA, S ;
KUMAR, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 186 (03) :735-746
[3]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[4]   Robust truss topology design via semidefinite programming [J].
Ben-Tal, A ;
Nemirovski, A .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :991-1016
[5]   Selected topics in robust convex optimization [J].
Ben-Tal, Aharon ;
Nemirovski, Arkadi .
MATHEMATICAL PROGRAMMING, 2008, 112 (01) :125-158
[6]   Deriving robust counterparts of nonlinear uncertain inequalities [J].
Ben-Tal, Aharon ;
den Hertog, Dick ;
Vial, Jean-Philippe .
MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) :265-299
[7]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[9]   Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints [J].
Chen, Jiawei ;
Koebis, Elisabeth ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (02) :411-436
[10]   Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications [J].
Chuong, Thai Doan ;
Kim, Do Sang .
ANNALS OF OPERATIONS RESEARCH, 2018, 267 (1-2) :81-99