Monte Carlo and Kinetic Monte Carlo Models for Deposition Processes: A Review of Recent Works

被引:37
作者
Cheimarios, Nikolaos [1 ]
To, Deifilia [2 ]
Kokkoris, George [1 ,3 ]
Memos, George [3 ]
Boudouvis, Andreas G. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Chem Engn, Athens, Greece
[2] McGill Univ, Dept Chem Engn, Montreal, PQ, Canada
[3] NCSR Demokritos, Inst Nanosci & Nanotechnol, Athens, Greece
关键词
physical vapor deposition; chemical vapor deposition; atomic layer deposition; electrochemical deposition; nanorods; graphene; transition metal dichalcogenide; Li metal anode; CHEMICAL-VAPOR-DEPOSITION; ATOMIC LAYER DEPOSITION; OPTIMAL OPERATION; THIN-FILMS; GROWTH; SIMULATION; GRAPHENE; ELECTRODEPOSITION; MORPHOLOGY; MECHANISM;
D O I
10.3389/fphy.2021.631918
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monte Carlo (MC) and kinetic Monte Carlo (kMC) models are widely used for studying the physicochemical surface phenomena encountered in most deposition processes. This spans from physical and chemical vapor deposition to atomic layer and electrochemical deposition. MC and kMC, in comparison to popular molecular methods, such as Molecular Mechanics/Dynamics, have the ability to address much larger time and spatial scales. They also offer a far more detailed approach of the surface processes than continuum-type models, such as the reaction-diffusion models. This work presents a review of the modern applications of MC/kMC models employed in deposition processes.
引用
收藏
页数:9
相关论文
共 80 条
[31]   Growth of nitrogen-doped graphene on copper: Multiscale simulations [J].
Gaillard, P. ;
Schoenhalz, A. L. ;
Moskovkin, P. ;
Lucas, S. ;
Henrard, L. .
SURFACE SCIENCE, 2016, 644 :102-108
[32]   Multiscale simulations of the early stages of the growth of graphene on copper [J].
Gaillard, P. ;
Chanier, T. ;
Henrard, L. ;
Moskovkin, P. ;
Lucas, S. .
SURFACE SCIENCE, 2015, 637 :11-18
[33]   Exploring driving forces for length growth in graphene nanoribbons during chemical vapor deposition of hydrocarbons on Ge(001) via kinetic Monte Carlo simulations [J].
Goltl, Florian ;
Murray, Ellen A. ;
Chen, Benjamin W. J. ;
Jacobberger, Robert M. ;
Arnold, Michael S. ;
Mavrikakis, Manos .
APPLIED SURFACE SCIENCE, 2020, 527
[34]   A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen [J].
Habib, Mohammad Rezwan ;
Liang, Tao ;
Yu, Xuegong ;
Pi, Xiaodong ;
Liu, Yingchun ;
Xu, Mingsheng .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (03)
[35]   Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study [J].
Jiang, Huijun ;
Hou, Zhonghuai .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (08)
[36]  
Jin Yang, 2018, Key Engineering Materials, V783, P115, DOI 10.4028/www.scientific.net/KEM.783.115
[37]   A brief review of atomic layer deposition: from fundamentals to applications [J].
Johnson, Richard W. ;
Hultqvist, Adam ;
Bent, Stacey F. .
MATERIALS TODAY, 2014, 17 (05) :236-246
[38]   Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty [J].
Kimaev, Grigoriy ;
Ricardez-Sandoval, Luis A. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 161 (161) :11-25
[39]   Artificial Neural Network Discrimination for Parameter Estimation and Optimal Product Design of Thin Films Manufactured by Chemical Vapor Deposition [J].
Kimaev, Grigoriy ;
Ricardez-Sandoval, Luis A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (34) :18615-18627
[40]   Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems [J].
Kimaev, Grigoriy ;
Chaffart, Donovan ;
Ricardez-Sandoval, Luis A. .
AICHE JOURNAL, 2020, 66 (08)