Component groups of quotients of J0(N)

被引:0
作者
Kohel, DR [1 ]
Stein, WA
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
ALGORITHMIC NUMBER THEORY | 2000年 / 1838卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f be a newform of weight 2 on Gamma (0)(N), and let A(f) be the corresponding optimal Abelian variety quotient of J(0)(N). We describe an algorithm to compute the order of the component group of A(f) at primes p that exactly divide N. We give a table of orders of component groups for all f of level N less than or equal to 127 and five examples in which the component group is very large, as predicted by the Birch and Swinnerton-Dyer conjecture.
引用
收藏
页码:405 / 412
页数:8
相关论文
共 20 条
  • [1] [Anonymous], 1973, Lecture Notes in Math.
  • [2] Birch B., 1963, J REINE ANGEW MATH, V212, P7, DOI DOI 10.1515/CRLL.1963.212.7
  • [3] BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
  • [4] Bloch S., 1990, PROGR MATH, P333, DOI 10.1007/978-0-8176-4574-8_9
  • [5] Bosch S., 1990, Neron models
  • [6] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [7] BREUIL C, UNPUB MODULARITY ELL
  • [8] Cremona J. E., 1997, Algorithms for modular elliptic curves, V2nd
  • [9] DIAMOND F, 1995, SEM FERM LAST THEOR, P39
  • [10] Grothendieck A., 1972, LECT NOTES MATH, V288