Global Lie-Tresse theorem

被引:58
作者
Kruglikov, Boris [1 ]
Lychagin, Valentin [1 ]
机构
[1] Univ Tromso, Inst Math & Stat, N-9037 Tromso, Norway
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 03期
关键词
Algebraic group; Pseudogroup action; Rational differential invariant; Invariant derivation; Tresse derivative; Differential syzygy; Orbits separation; Spencer cohomology; RANK; 2; DISTRIBUTIONS; CLASSIFICATION; PSEUDOGROUPS; INVARIANTS; FINITENESS;
D O I
10.1007/s00029-015-0220-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global algebraic version of the Lie-Tresse theorem which states that the algebra of differential invariants of an algebraic pseudogroup action on a differential equation is generated by a finite number of rational-polynomial differential invariants and invariant derivations.
引用
收藏
页码:1357 / 1411
页数:55
相关论文
共 63 条
[11]   Projective classification of binary and ternary forms [J].
Bibikov, Pavel ;
Lychagin, Valentin .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) :1914-1927
[12]  
Birkhoff G.D., 1927, C PUBLICATION AM MAT, VIX
[13]  
Cartan E., 1904, Annales scientifiques de l'Ecole Normale Superieure 3e serie, V21, P153, DOI 10.24033/asens.538
[14]  
Cartan E., 1910, Ann. Sci. c. Norm. Supr, V27, P109
[15]  
CARTAN E, 1905, ANN SCI ECOLE NORM S, V22, P219
[16]   A new kind of relationship between matrices [J].
Chevalley, C .
AMERICAN JOURNAL OF MATHEMATICS, 1943, 65 :521-531
[17]   On the models of submaximal symmetric rank 2 distributions in 5D [J].
Doubrov, Boris ;
Kruglikov, Boris .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 :314-322
[18]   A NULLSTELLENSATZ FOR ORDERED FIELDS [J].
DUBOIS, DW .
ARKIV FOR MATEMATIK, 1970, 8 (02) :111-&
[19]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[20]   Geodesic Webs on a Two-Dimensional Manifold and Euler Equations [J].
Goldberg, Vladislav V. ;
Lychagin, Valentin V. .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (01) :5-17