Global Lie-Tresse theorem

被引:58
作者
Kruglikov, Boris [1 ]
Lychagin, Valentin [1 ]
机构
[1] Univ Tromso, Inst Math & Stat, N-9037 Tromso, Norway
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 03期
关键词
Algebraic group; Pseudogroup action; Rational differential invariant; Invariant derivation; Tresse derivative; Differential syzygy; Orbits separation; Spencer cohomology; RANK; 2; DISTRIBUTIONS; CLASSIFICATION; PSEUDOGROUPS; INVARIANTS; FINITENESS;
D O I
10.1007/s00029-015-0220-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global algebraic version of the Lie-Tresse theorem which states that the algebra of differential invariants of an algebraic pseudogroup action on a differential equation is generated by a finite number of rational-polynomial differential invariants and invariant derivations.
引用
收藏
页码:1357 / 1411
页数:55
相关论文
共 63 条
[1]  
Albert C., 1987, TRAVAUX COURS, V19
[2]  
Alekseevskij D.V., 1991, ENCY MATH SCI, V28
[3]   Rank 2 distributions of Monge equations: Symmetries, equivalences, extensions [J].
Anderson, Ian ;
Kruglikov, Boris .
ADVANCES IN MATHEMATICS, 2011, 228 (03) :1435-1465
[4]  
[Anonymous], 1896, Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre
[5]  
[Anonymous], 1994, TRENDS PERSPECTIVES
[6]  
[Anonymous], 1994, ALGEBRAIC GEOM
[7]  
[Anonymous], 2005, PANORAMAS SYNTHESES
[8]  
[Anonymous], 1986, GEOMETRY JET SPACES
[9]  
[Anonymous], 1986, APPL LIE GROUPS DIFF
[10]   CODIMENSION AND MULTIPLICITY [J].
AUSLANDER, M ;
BUCHSBAUM, DA .
ANNALS OF MATHEMATICS, 1958, 68 (03) :625-657