Nonreciprocal Single-Photon Band Structure

被引:64
作者
Tang, Jiang-Shan [1 ,2 ,3 ]
Nie, Wei [4 ,5 ,6 ]
Tang, Lei [1 ,2 ]
Chen, Mingyuan [1 ,2 ]
Su, Xin [1 ,2 ,7 ]
Lu, Yanqing [1 ,2 ,3 ]
Nori, Franco [4 ,8 ]
Xia, Keyu [1 ,2 ,3 ,9 ,10 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210023, Peoples R China
[4] RIKEN Cluster Pioneering Res, RIKEN Quantum Comp Ctr, Saitama 3510198, Japan
[5] Tianjin Univ, Ctr Joint Quantum Studies, Tianjin 300350, Peoples R China
[6] Tianjin Univ, Dept Phys, Sch Sci, Tianjin 300350, Peoples R China
[7] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[8] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[9] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210023, Peoples R China
[10] Nanjing Univ, Minist Educ, Key Lab Intelligent Opt Sensing & Manipulat, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 日本科学技术振兴机构; 国家重点研发计划; 日本学术振兴会;
关键词
RESONATORS; DELAY;
D O I
10.1103/PhysRevLett.128.203602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a single-photon band structure in a one-dimensional coupled-resonator optical waveguide that chirally couples to an array of two-level quantum emitters (QEs). The chiral interaction between the resonator mode and the QE can break the time-reversal symmetry without the magneto-optical effect and an external or synthetic magnetic field. As a result, nonreciprocal single-photon edge states, band gaps, and flat bands appear. By using such a chiral QE coupled-resonator optical waveguide system, including a finite number of unit cells and working in the nonreciprocal band gap, we achieve frequency-multiplexed singlephoton circulators with high fidelity and low insertion loss. The chiral QE-light interaction can also protect one-way propagation of single photons against backscattering. Our work opens a new door for studying unconventional photonic band structures without electronic counterparts in condensed matter and exploring its applications in the quantum regime.
引用
收藏
页数:8
相关论文
共 87 条
[1]   Electromagnetic Helicity in Complex Media [J].
Alpeggiani, F. ;
Bliokh, K. Y. ;
Nori, F. ;
Kuipers, L. .
PHYSICAL REVIEW LETTERS, 2018, 120 (24)
[2]  
Anastasiadis A., ARXIV220213789
[3]   Topological Phase Transition in the Non-Hermitian Coupled Resonator Array [J].
Ao, Yutian ;
Hu, Xiaoyong ;
You, Yilong ;
Lu, Cuicui ;
Fu, Yulan ;
Wang, Xingyuan ;
Gong, Qihuang .
PHYSICAL REVIEW LETTERS, 2020, 125 (01)
[4]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[5]  
Asboth J. K., 2016, LECT NOTES PHYS, V919, P997
[6]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[7]   Unconventional quantum optics in topological waveguide QED [J].
Bello, M. ;
Platero, G. ;
Cirac, J. I. ;
Gonzalez-Tudela, A. .
SCIENCE ADVANCES, 2019, 5 (07)
[8]   Incompressible Polaritons in a Flat Band [J].
Biondi, Matteo ;
van Nieuwenburg, Evert P. L. ;
Blatter, Gianni ;
Huber, Sebastian D. ;
Schmidt, Sebastian .
PHYSICAL REVIEW LETTERS, 2015, 115 (14)
[9]   Quantum spin Hall effect of light [J].
Bliokh, Konstantin Y. ;
Smirnova, Daria ;
Nori, Franco .
SCIENCE, 2015, 348 (6242) :1448-1451
[10]   Characterizing optical chirality [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICAL REVIEW A, 2011, 83 (02)