Gradient H-Bonding Binder Enables Stable High-Areal-Capacity Si-Based Anodes in Pouch Cells

被引:153
作者
Hu, Linlin [1 ]
Zhang, Xudong [2 ]
Zhao, Peiyu [1 ]
Fan, Hao [1 ]
Zhang, Zhen [1 ]
Deng, Junkai [1 ]
Ungar, Goran [1 ]
Song, Jiangxuan [1 ]
机构
[1] Xi An Jiao Tong Univ, Shaanxi Int Res Ctr Soft Matter, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Network Informat Ctr, Ctr High Performance Comp, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon-based anodes; high-energy-dissipation binders; gradient hydrogen bonding; pouch cells; SILICON MICROPARTICLE ANODES; CONDUCTIVE POLYMER BINDER; NEGATIVE ELECTRODES; POROUS SILICON; ION; BATTERY;
D O I
10.1002/adma.202104416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alleviating large stress is critical for high-energy batteries with large volume change upon cycling, yet this still presents a challenge. Here, a gradient hydrogen-bonding binder is reported for high-capacity silicon-based anodes that are highly desirable for the next-generation lithium-ion batteries. The well-defined gradient hydrogen bonds, with a successive bond energy of -2.88- -10.04 kcal mol(-1), can effectively release the large stress of silicon via the sequential bonding cleavage. This can avoid recurrently abrupt structure fracture of traditional binder due to lack of gradient energy dissipation. Certainly, this regulated binder endows stable high-areal-capacity silicon-based electrodes >4 mAh cm(-2). Beyond proof of concept, this work demonstrates a 2 Ah silicon-based pouch cell with an impressive capacity retention of 80.2% after 700 cycles (0.028% decay/cycle) based on this gradient hydrogen-bonding binder, making it more promising for practical application.
引用
收藏
页数:9
相关论文
共 63 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Encasing Prelithiated Silicon Species in the Graphite Scaffold: An Enabling Anode Design for the Highly Reversible, Energy-Dense Cell Model [J].
Bai, Miao ;
Yang, Liyan ;
Jia, Qiurong ;
Tang, Xiaoyu ;
Liu, Yujie ;
Wang, Helin ;
Zhang, Min ;
Guo, Runchen ;
Ma, Yue .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (42) :47490-47502
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Direct Observation of Carboxymethyl Cellulose and Styrene Butadiene Rubber Binder Distribution in Practical Graphite Anodes for Li-Ion Batteries [J].
Chang, Won Jun ;
Lee, Gyu Hyeon ;
Cheon, Yeong Jun ;
Kim, Jin Tae ;
Lee, Sang Il ;
Kim, Jaehyuk ;
Kim, Myungseop ;
Park, Won Il ;
Lee, Yun Jung .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41330-41337
[5]   Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices [J].
Chen, Hao ;
Ling, Min ;
Hencz, Luke ;
Ling, Han Yeu ;
Li, Gaoran ;
Lin, Zhan ;
Liu, Gao ;
Zhang, Shanqing .
CHEMICAL REVIEWS, 2018, 118 (18) :8936-8982
[6]   First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations [J].
Chevrier, V. L. ;
Zwanziger, J. W. ;
Dahn, J. R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 496 (1-2) :25-36
[7]   Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes [J].
Choi, Jae-Yong ;
Lee, Dong Jin ;
Lee, Yong Min ;
Lee, Young-Gi ;
Kim, Kwang Man ;
Park, Jung-Ki ;
Cho, Kuk Young .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (17) :2108-2114
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[10]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495